上限e₂下限1dx x*√(1 lnx)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:50:11
令u=lnx,du=1/xdx当x=√e,u=1/2当x=e^(3/4),u=3/4∫(√e~e^(3/4))1/[x√(lnx*(1-lnx))]dx=∫(1/2~3/4)1/√[u*(1-u)]d
令t=e^x,dx=1/tdt,原式=1/t√(1+t^-2)dt上限e下限1,化简,1/√(1+t^2)dt,这个就可以积分了,一个原函数为ln(t+√(1+t^2)),把上下限代入即可
∫(上限:e,下限:1/e)|lnx|dx=-∫(上限:1,下限:1/e)lnxdx+∫(上限:e,下限:1)lnxdx=-xlnx|{1/e,1}+∫x*(1/x)dx+xlnx|{1,e}-∫x*
∫(1→e)x·lnx·dx=x²/2·lnx|(1→e)-∫(1→e)x²/2·1/xdx=e²/2-∫(1→e)x/2dx=e²/2-x²/4|(
答:原式=∫(1/e到1)-lnxdx+积分(1到e)lnxdx=[-xlnx+x|(1/e到1)]+[xlnx-x|(1到e)]=1-2/e+1=2-2/e
定积分上限e下限1,xlnxdx,=∫(1,e)lnxd(x^2)/2x^2/2*lnx|(1,e)-∫(1,e)(x^2)/2dlnx=e^2/2-x^2/4|(1,e)=e^2/2-e^2/4+1
令e^x=t,则x=lnt,dx=(dt)/t,当x=0时,t=1.当x=ln2时,t=2.原式=∫{下限1上限2}[√(t-1)]/tdt再令√(t-1)=u,则t=u^2+1,dt=2u*du,当
定积分dx/(e^x+1+e^3-x)上限正无穷,下限0=∫(0,+∞)e^x/(e^2x+e^x+e^3)dx=∫(0,+∞)e^x/((e^x+1/2)^2+e^3-1/4)dx=1/√(e^3-
我写成F(1,2)(x-1)^(1/2)dx=F(1,2)(x-1)^(1/2)d(x-1)=2/3*(2-1)^(3/2)-2/3*(1-1)^(3/2)=2/3再问:那个√x没求导之前是什么?再答
∫[1,e]lnx/√xdx=∫[1,e]lnxd2√x=2√xlnx[1,e]-∫[1,e]2√x/xdx=2e√e-4√x[1,e]=2e√e-4√e+2再问:√e,是不是根号e再答:嗯再问:谢谢
∫[0,ln2]e^x/(1+e^2x)dx=∫[0,ln2]1/(1+e^2x)de^x=arctane^x[0,ln2]=arctan2-π/4
∫(-∞~∞)e^x/(1+e^2x)dx=∫(-∞~∞)1/(1+e^2x)d(e^x)=lim(x-->∞)arctan(e^x)-lim(x-->-∞)arctan(e^x)=π/2-0=π/2
原式=∫(1,e)knxdlnx=(lnx)²/2(1,e)=1/2-0=1/2再问:为什么可以=∫(1,e)lnxdlnx再答:dx/x=?采纳吧
换元整体令√(e^x+1)=t所以x=ln(t^2-1)原式=∫tdln(t^2-1)=∫t*2t/(t^2-1)dt=∫(2t^2-2+2)/(t^2-1)dt=∫[2+2/(t^2-1)]dt=2
原式=∫(1,e)dlnx/(1+lnx)=ln(1+lnx)(1,e)=ln(1+1)-ln(1+0)=ln2再问:∫(1,e)dlnx/(1+lnx)怎么转化成这个的再答:dlnx=d(1+lnx
再答:二十年教学经验,专业值得信赖!如果你认可我的回答,敬请及时采纳,在右上角点击“评价”,然后就可以选择“满意,问题已经完美解决”了。再问:恩恩再问:定积分(上限1,下限0)【x√(1-x^2)】a
然后可以令lnx=(sint)^2,积分范围是t从π/4到π/2∫1/√lnx(1-lnx)d(lnx)=∫(2sintcost/sintcost)dt=2∫dt=π/2