两个相互独立的随机变量x.y均满足b(50,0.2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:56:47
设两个随机变量X,Y相互独立,且都服从均值为0、方差为12

令:Z=X-Y,则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=12+12=1,因此,Z=X-Y~N(0,1),∴E|X-Y

设两个相互独立的随机变量X和Y的方差分别为4和2,则随机变量3X-2Y的方差是(  )

解,由题意知X和Y独立,且D(X)=4,D(Y)=9,由方差公式知:D(3X-2Y)=9D(X)+4D(Y),可得:D(3X-2Y)=9D(X)+4D(Y)=9×4+4×2=44,故选:D.

设相互独立的两个随机变量X,Y具有同一分布率,且X的分布率为

解(X,Y)组合情况有以下四种:(0,0),(0,1),(1,0),(1,1)对应概率均是14对于后三种情况,Z=1,对于第一种情况,Z=0故:Z的分布律为Z=0,P=14Z=1,P=34

设X和Y是相互独立的随机变量

var(z)=Var(2x-y)=4var(x)-4cov(x,y)+var(y)=16+0+9=25标准差为开平方5

设两个相互独立的随机变量X和Y均服从N(1,1/5),如果随机变量X-aY+2满足条件D(X-aY+2)=E[(X-aY

由方差的分解公式知,D(X-aY+2)=E[(X-aY+2)^2]-[E(X-aY+2)]^2,又有条件D(X-aY+2)=E[(X-aY+2)^2],则E(X-aY+2)=0,所以E(X-aY+2)

求解一道关于分布律的题目 设X和Y是两个相互独立的随机变量

P(Z=0)=P(X=0){P(Y=0)+P(Y=-1)}=0.3P(Z=1)=1-P(Z=0)=0.7如有意见,欢迎讨论,共同学习;如有帮助,

如图 设xy 是两个相互独立的随机变量 求得是D(x+y)

如图(点击可放大):Y的方差,我是用最基本的积分(分部积分)做的,也可以用指数分布的性质做:Y是 λ=1的指数分布,所以它的期望:E(Y)=1/ λ=1它的方差:D(Y)=1/&n

假设X是只可能取两个值的离散型随机变量,Y是连续型随机变量,且X与Y相互独立,则随机变量X+Y是连续函数.请问本题答案中

首先F是连续分布函数,你就当他是个连续函数,连续函数相加依然是连续函数这是显然的啊

设X,Y为相互独立的随机变量,且均服从N(0,1),求E[min(X,Y)].

Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z

两个随机变量相互独立的条件

联合分布函数F(x,y)=F(x)*(y)或密度函数p(x,y)=p(x)*p(y)

设两个随机变量X,Y相互独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|X-Y|的方差.

分析:这个直接求,有直接定理E(X)=E(Y)=u=0Z=X-YE(|Z|)=(2/√2π)∫ze^(-z^2/2)dz=√(2/π)D(X)=D(Y)=1/2D(|X-Y|)=E(|X-Y|^2)-

已知随机变量x和y相互独立且均服从参数λ=2的指数分布,问,随机变量...

x和y相互独立且均服从参数λ=2的指数分布--->F(x,y)=F(x)*F(y)=(1-e^(-2x))(1-e^(-2y))=1-e^(-2x)-e^(-2y)+e^(-2x-2y)

证明:设X和Y为两个随机变量,若对于任意的x和y,X和Y是相互独立的充要条件是P{X

题目错了,正确的命题应该是:设X和Y为两个随机变量,若对于任意的x和y,X和Y是相互独立的充要条件是P{X

设x和y是相互独立的两个随机变量,且x服从(-1,2)上的均匀分布,y服从y~N(1,4)则D(XY)=

解题思路了讲到这后面的积分自己先积一积不懂追问再问:谢谢,明白了,但是木有更简单一点的么~~~~~再答:放心~是没有捷径滴而且这样做计算量不算很大,耐心一点就行了

设X,Y为相互独立的随机变量,且均服从N(0,1),求E[min(X,Y)]

Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z

随机变量X,Y相互独立,概率密度f(x)

f(x,y)=1/4*exp{-x-y/4}(x>0,y>0)f(x,y)=0(其他)

若X,Y是相互独立的随机变量,那么X,2Y相互独立吗

相互独立再问:那如果设f(x)为概率密度,那么f(2x)=2f(x)还是f(2x)呢?谢谢!再答:先给分吧再问:请讲一下吧,谢谢!再答:第一个再答:再答:对其求导