函数f(x)=(x-1)e^x-kx^2,(k>0),讨论f(x)的单调性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:33:02
1、f(x)=f′(1)e^(x-1)-f(0)x+1/2x^2中,令x=0的f'(1)=ef(0)所以f(x)=f(0)e^x-f(0)x+1/2x^2关于x求导得:f'(x)=f(0)e^x-f(
∵f(x),g(x)均非偶函数,∴其关于y轴的对称点不可能在自身图像上,而只能在另一函数图像上又∵f(x)的定义域为x<0,∴g(x)图像上的点只能在x>0时才可能有对称点存在假设函数g(
很高兴为您解答,liamqy为您答疑解惑如果本题有什么不明白可以追问,再问:l应为含x的函数。怎么能提到积分号外来呀?再答:是个常数,积分是常数区域,,
1.(1)f'(x)=e^x+e^(-x)求导公式的运用,然后用基本不等式.所以f'(x)=e^x+e^(-x)≥2根号(e^x+e^(-x))≥2就是求导求好了然后用基本不等式.不然怎么证(2)因为
10几年前高中是没有学导数的,何必如此刀剑相向f'(x)=0=-2x-e^x,即e^x=-2x,函数存在极值因为,x=0时,e^0=1,-2x=0易证x>0,f(x)是减函数,存在最大值.但是,极值点
f'(x)=(2x+1)e^x+(x^2+x+1)e^x=(x^2+3x+2)e^x=(x+1)(x+2)e^x=0,得极值点x=-2,-1因此单调减区间为:(-2,-1)
1.∵f(x)=(e^x-1)/(e^x+1)=1-2/(e^x+1)∴f(x)的值域为(-1,1)∴f^-1(x)的定义域为(-1,1)2.∵f(2-x)的定义域是[-1,1]∴函数f(x)的定义域
ax^2这不是复合函数,这只是幂函数x^2乘以一个常数得到.而x^2的导数为2x常数直接添上即可.
设X1>X2F(X1)-F(X2)=In[(1+e^x1)/(1+e^x2)]+x1-x2x1>x2x1-x2>0[(1+e^x1)/(1+e^x2)>1In[(1+e^x1)/(1+e^x2)]>0
题目可转化为:假设对称点为(x0,y0)和(-x0,y0),其中:x0>0此时有:x0^2+e^(-x0)-1/2=x0^2+ln(x0+a)即x^2+e^(-x)-1/2=x^2+ln(x+a
为什么我会想直接求二阶导数.然后证明为凸函数就行了.囧.第二个化为m(lnx+x)=x^2/2有且有一个跟令H(x)=x^2/2-m(lnx+x)让H(x)的零点为1个就行了.不过我还是挺纠结.凸函数
1、F(x)=g(x)-f(x)=(e^x-1)-ln(x+m)F'(x)=e^x-1/(x+m)当x=0时,F'(x)=0,即e^0-1/(0+m)=0,m=1F'(x)=e^x-1/(x+1)当x
1.f'(x)=e^x-1/(x+1),f'(0)=0,f''(x)=e^x+1/(x+1)^2>0,f'(x)为(-1,+∞)上的增函数,所以x>0时,f'(x)>f'(0)=0,f(x)在(0,+
f(x)=(e^x-1)/(e^x+1)定义域为Rf(-x)=[e^(-x)-1]/[e^(-x)+1]=(1-e^x)/(1+e^x)[分子分母同时乘以e^x]=-(e^x-1)/(e^x+1)=-
出错的地方在于f(x)不是复合函数只有e^(-x)这一个部分需要按照复合函数求导的方法求再问:再请问下,(-x)'为什么等于-1?再答:y=x的导数是y'=1y=-x导数就多乘个-1y'=-1……再问
1/2(e^x-1/e^x)倒数为零就是令1/2(e^x-1/e^x)=0有e^x=e^-xe^(2x)=1所以2x=0x=0
再问:您好,请问第3题第二步是怎么化的,我知道结果是1/sinx,但中间那步我看不出你是怎么化出来的?再答:
1、定义域为x≠-1f(x)=[(x-1)/(x+1)]e^x则,f'(x)={[(x+1)-(x-1)]/(x+1)^2}*e^x+[(x-1)/(x+1)]*e^x=[2/(x+1)^2]*e^x
∵e^(-x)的导数=-e^(-x)这里有一个负号出现再问:e^(-x)的导数不是e^(-x)吗再答:不是是e^(-x)×(-x)'=-e^(-x)
lim(x→0)f'(x)/(e^x-1)=lim(x→0)[2e^2x-2]/(e^x-1)=lim(x→0)2(e^2x-1)/(e^x-1)=lim(x→0)4x/x=4