函数f(x)=e^x-b (x-a)(x-1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:50:12
(Ⅰ)当a=b=-3时,f(x)=(x3+3x2-3x-3)e-x,故f′(x)=-(x3+3x2-3x-3)e-x+(3x2+6x-3)e-x=-e-x(x-3-9x)=-x(x-3)(x+3)e-
复合函数求导f(x)=e^tt=2x导数为2e^(2x)
利用积累分布函数的性质F(负无穷)=0,F(正无穷)=1,F是不减的那么b必须为0因为b>0时,F(负无穷)=正无穷
1.(1)f'(x)=e^x+e^(-x)求导公式的运用,然后用基本不等式.所以f'(x)=e^x+e^(-x)≥2根号(e^x+e^(-x))≥2就是求导求好了然后用基本不等式.不然怎么证(2)因为
10几年前高中是没有学导数的,何必如此刀剑相向f'(x)=0=-2x-e^x,即e^x=-2x,函数存在极值因为,x=0时,e^0=1,-2x=0易证x>0,f(x)是减函数,存在最大值.但是,极值点
e^x-9中因为x
令t=e^(﹣x),则:lnt=﹣x得:dt/t=﹣dx∫e^(-x)f'(e^-x)dx=∫t·f'(t)·[﹣(dt/t)]=﹣∫f'(t)dt=﹣f(t)+C
(1)从几何的角度不难看出,f(x)是下凸函数,故其切线总是位于f(x)图象的下方,显然有f(x)≥kx+b成立.下面从代数的角度证明:设任一切点坐标为(m,e^m)l:y-e^m=e^m(x-m),
f'(x)=(2x+a)e^(3-x)-(x^2+ax+b)e^(3-x)因为x=3是一个极值点f'(x)=(2*3+a)-(3^2+3a+b)=0b=-3-2af'(x)=-e^(3-x)(x^2+
1.f'(x)=e^x-1/(x+1),f'(0)=0,f''(x)=e^x+1/(x+1)^2>0,f'(x)为(-1,+∞)上的增函数,所以x>0时,f'(x)>f'(0)=0,f(x)在(0,+
f(x)=(e^x-1)/(e^x+1)定义域为Rf(-x)=[e^(-x)-1]/[e^(-x)+1]=(1-e^x)/(1+e^x)[分子分母同时乘以e^x]=-(e^x-1)/(e^x+1)=-
解f(x)=(x²+ax+b)e^(3-x)f'(x)=(x²+ax+b)'e^(3-x)+(x²+ax+b)[e^(3-x)]'=(2x+a)e^(3-x)+(x
首先判断奇偶要看定义域是否关于原点对称,只有在对称情况下才能接下来判断定义域e^x-e^(-x)>0e^x>e^(-x)x>-x2x>0x>0定义域都不关于原点对称,∴是非奇非偶函数这是个复合函数外面
∵e^(-x)的导数=-e^(-x)这里有一个负号出现再问:e^(-x)的导数不是e^(-x)吗再答:不是是e^(-x)×(-x)'=-e^(-x)
题目应该有点问题,应该是:设e^(-x)是f(x)的一个原函数,转化为求∫xf(x)dx=∫xe^(-x)dx的不定积分,答案B、D有一个也弄错,答案应该是-(x+1)e^(-x)+C
f(x)在x=0处可导意味着以下两点成立:1.f(x)在x=0处连续2.f(x)在x=0处左右导数相等由1,必然有e^(2*0)+b=sin(a*0)即1+b=0,故b=-1由2,左导数=(e^(2x
(1)F'(x)=e^x+cosx-a,x=0是极值点,要求F‘(0)=0即a=2(2)依题意,f(x1)=g(x2)=x2,故PQ=|x2-x1|=|f(x1)-x1|=|f(x1)-g(x1)|=
=∫(-1,1)f(x)dx=∫(-1,0)f(x)dx+∫(0,1)f(x)dx=e-2/3
lim(x→0)f'(x)/(e^x-1)=lim(x→0)[2e^2x-2]/(e^x-1)=lim(x→0)2(e^2x-1)/(e^x-1)=lim(x→0)4x/x=4
1.若函数是奇函数,则f(0)=0,则b=0,又因为f(x)=f(-x),则a=02.写出分段函数.则显知a=03、a4(用反证法