函数z=√(x² y²)在原点沿l=i方向的方向数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:55:05
首先如果曲面经过原点的话,那么曲面上距原点最近的点当然就是原点了,所以原点处曲面的法线当然经过原点.下面只证曲面不过原点的情况,设点(x,y,z)≠(0,0,0),则使该点到原点距离最小就是说使得x^
由题意:x+y>0x-y+2>0所以这定义域是由两条直线所划成的平面4个区域中的一个.
第一步,找|x|+|y|
很简单!建立方程L(x,y,z,c)=(x^2+y^2+z^2)^1/2+c(z^2-xy-x+y-4)然后分别对L求偏导,最后求的xyzc,最后再代入方程L就是说球的结果!
帮不上你,大学的知识都还给老师了%>_
由柯西不等式(a^2+b^2+c^2)(x^2+y^2+z^2)>=(ax+by+cz)^2,得((1/√2)^2+(1/√3)^2+1)(2x^2+3y^2+z^2)>=(x+y+z)^22x^2+
S=1/2×2×k/2=1/2,k=1,m=k/2=1/2y=1/x,1≤x≤3,1/3≤y≤1PQ=2×√x^2+1/x^2因为x^2+1/x^2≥2PQ≥4
x>0,y>z
由题意可知,y为奇函数m^2-2
f对第1个变量的偏导函数记作f1,第2个变量的偏导函数记作f2,dz=f1*d(xz)+f2*d(z/y)...[注:写完整的话是f1(xz,z/y),f2也如此]=f1*(xdz+zdx)+f2*(
取特值y=0则z=|x|则不存在倒数再问:也就是说在某些方向上的方向导数不存在么?再答:是的他问题是问是否都存在那我们就只要指出某个方向都不存在细细想一下,只有一个方向存在,那就是x=y的那个方向,你
1、隐函数对x求导得1+az/ax+yz+xy*az/ax=0,故az/ax=-(1+yz)/(1+xy);F对x求导得aF/ax=e^x*y*z^2+e^x*y*2z*az/ax;当x=0,y=1时
将向量L单位化可得其方向余弦:L0=(1,-1,0)/(√2)对函数f求偏导数:f'x=2x,f'y=2y,f'z=2z,由方向导数公式得f'L=f'x*(1/√2)+f'y*(-1/√2)=(√2)
设函数f(x,y,z)=x^2+y^2+z^2在点Q(x,y,z)处沿向量P的方向导数最大,因为函数在点Q处沿任意方向的方向导数的最大值是在梯度方向上取得,函数的梯度是向量(fx,fy,fz)=2(x
设Y=K1X,Z=K2Y那么Z=K1K2X所以,Z是X的正比例函数.Z=1,X=-5则:K1K2=Z/X=1/-5=-1/5函数式是:Z=-X/5∵y是x的正比例函数∴y=k1x∵z是y的正比例函数∴
由柯西不等式,(2^2+1^2+4^2)*(x^2+y^2+z^2)大于等于(2x+y+4z)^2解一下就可以了
求函数偏导:z=arctan(x-y)^z因为z=arctan(x-y)^z,所以(x-y)^z=tanz;两边取对数得zln(x-y)=ln(tanz)作函数F(x,y,z)=zln(x-y)-ln
记p=√(x^2+y^2+z^2),则xyz+p=√2,p=√2-xyz两边对x求偏导得:yz+xyz'(x)+[x+zz'(x)]/p=0得:z'(x)=(-yz-x/p)/(xy+z/p)=-(p
1.用拉格朗日乘数法没有用柯西不等式的方便(x²+y²+z²)*(1+1+1)≥(x+y+z)²=1当x=y=z时等号成立所以x²+y²+z
属于条件极值使用拉格朗日最小二乘法构造函数:F(x,y,z)=x+y+z+λ(1/x+1/y+1/z-1)分别为x,y,z求导Fx'(x,y,z)=1-λ/x^2Fy'(x,y,z)=1-λ/y^2F