函数可导,则做到书等于右导数?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:43:06
不对,左导数的确等于右导数,左极限也等于右极限也等于函数值,但是他们两个之间却不是相等的.函数值和函数在定点的一阶导数的概念是不一样的,算法也不一样.
楼上二位的证明方法都有问题,以下才是严格的证明.证明:用反证法,设lim(x趋于a)f'(x)=L,就是要证L=f'(a),那么我们先假设L>f'(a).如此一来,取L'=(L+f'(a))/2>f'
1.“连续可导”在不同的时候可能有不同指代,但是大多数时候还是说函数本身连续,并且进一步的,函数可导.此时函数的导函数不一定是连续的.具体的例子可以去查《分析中的反例》,或者很多数学分析教材上也会有.
不正确.例如函数:当x≤0时,y=x;当x>0时,y=1.在x=0处左导数=1;右导数=0,但是在x=0处该函数是间断的.
iff(x)isoddthenf(x)=-f(-x)f'(x)=lim(y->0)[f(x+y)-f(x)]/y=lim(y->0)[-f(-x-y)+f(-x)]/y(fisodd)=-lim(y-
是,可导的意思就是:左导数等于右导数.
易证该函数在x=0处是连续的;其次,由于 lim(x→0-)[f(x)-f(0)]/x =lim(x→0-)[(√|x|)sin(1/x²)]/x =-lim(x→0-){sin(1
你有点混淆概念l了同学我明白你的困惑你把极限和求导搞混了.首先在某一点可导,这一点必须有定义.按照你所说函数F(x)=cosx*I(x>=0)+(cosx+1)*I(x0-而是直接在x=0处求.所以此
左右分段的函数在分段点处的可导性一般是通过判断左右导数是否相等来实现.如x<0时,f(x)=x+1,x≥0时,f(x)=x-1.对于本题来说,函数在x=0处的分段是x=0和x≠0,对于此类函数,没有讨
导数是描述函数在某点的变化率的,而极限描述的是函数在某点(或趋于这点)的函数值,关注导数和极限的相等关系是没有意义的.如果你非要问什么情况下函数极限等于其导数,那么要求函数首先要连续可导,并且导函数跟
以下函数满足要求,当X在(-无穷大,0】上,f(x)=-X当X在(0,+无穷大)上,f(x)=X以上函数在定义域内连续,在X=0处连续,但左极限不等于右极限,既f'(x0)不存在
函数在定义域中一点可导需要一定的条件:函数在该点的左右两侧导数都存在且相等对.就是你所说的左导数等于右导数
因为导数的定义中没有规定要从哪个方向趋近,所以,在某点有倒数意味着以任意方式趋近都要是同一个值,这个值才是导数在有些情况下,从左,右趋近的时候,值是不同的,如y=|x|,从左趋近0是-1从右趋近0是1
不是有些函数有左导数没有右导数再问:那样也可导?再答:可导再问:那那函数的连续呢?多元函数在某点连续是不是就不用左极限=右极限了?再答:对连续可导可导不一定连续再问:多元函数连续是不是也得证明左极限等
(f(-2x))‘=-2f'(-2x)再问:为什么乘以f'(-2x)再答:f(-2x)这个相当于复合函数求导y=f(u)u=-2x求导的时候y'=f'(u)*u'=f'(-2)*-2=-2f'(-2x
如果函数在某一点处可导,则不一定存在该点的某个邻域,使得函数在该邻域内可导.比如函f(x)=x²D(x)(其中D(x)为狄利克雷函数)在点x=0处可导,但在其它任意一点处均不可导.
不好意思,今天看到楼下的回答,发现自己弄错一个符号,这个级数不是正项级数,而是交错级数令An=sinπ(√(n2;+a2;))lim(An/1/n)=lim(n*
导数等于正无穷也可被称之为不可导.
选C根据导数的公式可得LIM[F(X+ΔX)-F(X)]/ΔX=F'(X)当X=1时,LIM[F(1+ΔX)-F(1)]/ΔX=F'(1)所以,LIM[F(1+ΔX)-F(1)]/3ΔX=(1/3)L