判断是否显著性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:40:25
显著性检验的原理就是“小概率事件实际不可能性原理”来接受或否定假设.其基本步骤如下:第一:提出统计假设H0和HA.第二:构造统计量t,并根据样本资料计算t值.第三:根据t分布的自由度,确定理论临界值t
先看问题,根据实际提出假设,小于0.05或0.01,那么否定假设,大于0.05或0.01那么接受假设.如果是T检验的话用2-tailed比较,如果是用SPSS的话就直接用sig.(2-tailed)或
F越大,越有显著性,F很大,没任何问题,好比就是P值很小,百万分之一,你能说P就有问题吗?这是一个道理的F的大小,你可以去查表,看F统计量的分布,等我经常帮别人做这类的数据分析的
检验方法有很多,如开方检验,t检验,具体参照概率论与数理统计
根据数据做一个折线图,看他的变化趋势
生物题么?再答:观察雌雄得病比例是否相等再答:如果是系谱图再答:先看是显性还是隐性再答:然后用否定的思想再答:假设如果是看看有没有不符合的地方再答:但是即使没有否定的地方只要没有特殊条件常染色体是一定
只有一组数据无法判断数据有无显著性差异只能做出这组数据的平均离差、标准差、方差、平均数等等统计量
根据两组样本量n的大小来判定n均小于30或50就选成组设计t检验;否则就选成组设计u检验.
显著性检验的基本思想可以用小概率原理来解释.1.小概率原理:小概率事件在一次试验中是几乎不可能发生的,假若在一次试验中事件事实上发生了.那只能认为事件不是来自我们假设的总体,也就是认为我们对总体所做的
首先来说明各个符号,B也就是beta,代表回归系数,标准化的回归系数代表自变量也就是预测变量和因变量的相关,为什么要标准化,因为标准化的时候各个自变量以及因变量的单位才能统一,使结果更精确,减少因为单
这个地方只有两个变量,你怎么用多元回归来分析呢,而且是判断他们是否存在显著性差异,可能做不了,回归分析只能判断变量之间是否存在相关关系.你可以通过t检验或者卡方检验来看看他们是否有显著差异
看最后一列的概率值,如果概率值小于指定的检验水平(通常用0.05),这个系数就是显著的.否则是不显著的.例如X1,X3是显著的,X和X2是不显著的.再问:不显著说明了什么?再答:不显著说明这个解释变量
多维空间,判断两组数据的分布.应该采用拟合的分析.可以参考平面数据的拟合分析.第一步,要选择合适的座标系.不同的座标系对运算量的影响很大.第二步,建立假设的多维空间的方程,分别判断每组数据与假设方程是
方差分析由于涉及三组以上,因此比t检验需要有更多的注意问题.目前临床最常见的错误就是关于两两比较方面的.对于三组及以上资料,一般来讲,采用方差分析得到的F值是一个组间的总体比较.例如三组间比较如果有差
看来LZ应该是刚开始作统计分析啊,其实里面的数据还是比较简单的,第一行MultipleR表示R^2的值,第二行则表示R值,第三行表示调整R方,一般R^2是衡量回归方程是否显著的决定因子,但只是一方面.
t值小于2.1,说明在0.05的显著性水平下差异不显著,t值大于2.86说明在0.01的显著性水平下差异显著.
不正确,应该输入一起再问:����һ����û̫����
看sig啊再问:total那行是什么意思?再答:总变异
z是是统计量,sig是p值,你的都是没有差异的再问:谢谢~~那请问z值或者p值是什么范围的时候才算没有差异呢?再答:z值无所谓的,只有要看pp大于0.05没有差异再问:不好意思,再问一下,p值是看双侧
需要确定你的实验设计,如果A,B是独立的进行独立样本检验,如果A,B总体分布是正太分布,可以选择独立样本t检验,如果总体分布未知,可以考虑独立样本的非参数检验方法,如Mann-WhitneyU检验,K