单项极限为零是级数收敛的什么条件

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:28:00
任意项级数中 ,判断敛散性,用比值审敛法,其比值极限为1的话原级数是收敛还是发散呀?定理值给了大

不一定收敛,需要用其它方法判断.经济数学团队帮你解答.请及时评价.谢谢!

级数的敛散性问题1/n 调和函数是发散的,但是为什么通项极限为零? 极限为零不应该是收敛的吗

通项极限为零是级数收敛的必要条件,而不是充分条件.调和级数就是最基本的例子.

级数收敛于f(x)什么意思 级数收敛于函数?收敛是不是极限存在的意思?

就是说级数的参数在变,所以级数的和在变,怎么变化呢?按照f(x)方式在变.就说收敛于函数f(x).

级数收敛则极限为零? 图中画红线部分求解释!

好像级数收敛的必要条件就是通项的极限等于0吧,记不太清楚了,不过应该没有错再答:……不对,我说错了,具体知识忘记了,抱歉……再问:没错啊你是对的是我想错了谢谢啊!

交错级数只要原级数的极限趋向于0就一定收敛?

不是还有一个要求吗,前一个比后一个大再问:书上是有这个条件,可是(-1)^n/n^0.9为什么是条件收敛?再答:因为它不是绝对收敛,而且这两条都行再问:好吧,我问的是。。原级数为什么收敛绝对值后p-级

已知级数∑Un收敛,若Vn/Un的极限是1,能否断定∑Vn收敛,为什么

对于正项级数来说是成立的,但对于任意项级数来说则不一定成立了再问:能举个例子吗?再答:比如说级数un=(-1)^n/√n显然交错级数收敛而vn=(-1)^n/√n+1/n易知limvn/un=1但vn

级数的绝对收敛

答案a>1由于a>0,故1+a^n>0.加绝对值无所谓①01通项极限为0.用根值判别法,对通项1/(1+a^n)开n次方,结果是1/a,满足收敛条件,收敛半径是a.故答案就是a>1这是我自己的方法,这

什么叫级数收敛呢?是存在极限的意思吗?

即limsn极限存在可以说是存在极限的意思.

利用级数收敛的必要条件证明2^n*n!/n^n的在n趋于无穷大时极限为0

再答:如果满意,请点右上角“采纳答案”再问:级数x^n/n+1求和函数,收敛区间要对0另外讨论吗?老师讲没有提过,但答案里面是当x为0时函数为1,有点疑惑再答:幂级数在x=0始终收敛啊再问:嗯,不过这

收敛 极限的含义可不可以理解为~收敛是针对数列极限针对函数的?如果不是 请给我讲下收敛 极限 有界的含义

收敛是大学里的知识,就是某数列的极限.不必扣得那么严.但是收敛必有界,而有界不一定收敛,比如1,-1,1,-1.他就有界在1和-1间,但不收敛收敛的定义可去百科里找一下

判断级数的敛散性 若收敛 是条件收敛还是绝对收敛

 再问:这个用的什么方法再答:判断收敛性可以使用等价无穷小再问:不太懂再答:结合我写的步骤看啊再问:好的

若Un的级数收敛,则1/Un的级数是收敛还是发散

是发散的,可以用级数收敛的必要条件来判断.经济数学团队帮你解答.请及时评价.

【级数求助】莱布尼茨是交错级数收敛的充分条件?

为什么你问的问题总那么古怪呢1,那是定理,满足莱布尼茨定理了,你说能不能推出交错级数收敛,你说是不是充分条件?定义定理一般都是充分条件,如果不是的话,那定义定理就是错的2,A是中国人推出A是人B是外国

若极限=0 那么级数是收敛的吗?

如果你的意思是级数的项的极限是0,那么级数不一定收敛,比如∑1/n不收敛,∑0收敛.如果你的意思是和的极限是0,那么级数就等于0啊,就收敛.

绝对收敛和条件收敛我想知道我在求某级数是为绝对收敛还是条件收敛的时候,是先求绝对收敛么?如果它发散,再看原级数是否收敛.

判断一个级数的收敛性时首先看它是否绝对收敛(特别是交错级数),若绝对收敛则原级数收敛,否则…你的判断顺利正确.判断绝对收敛的方法:将原级数加上绝对值,再根据其级数特点用相应的方法(如比较法,比值法,根

关于级数的几道题.1.设(级数)U绝对收敛,V条件收敛,A B是非零常数,证明AU+BV必条件收敛.2.判别下列级数是条

1、由已知U绝对收敛,V条件收敛,那么级数|U|、|V|必收敛那么A|U|、B|V|必收敛由常数级数的性质4可知,A|U|+B|V|必收敛,所以他们必条件收敛2、既然是交错级数,就直接根据莱布尼茨定理

不是有一条定理是这样说吗 若级数收敛,则极限为0.可是下面的级数的极限为1,怎么还说它收敛呢?

级数收敛,则通项的极限是0.级数收敛的定义:级数的前n项和的极限存在时,称级数收敛.这里用到的是级数收敛的定义.再问:������ì����һ��˵����ͨ��Ϊ0��һ��˵���޴�������