四边形ABCD中,EF是直线AC上两点,且AE=CF求证BE=DE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:40:49
证明:作DC的中点G,连接EG,FG,则EG=12AC=a2,GF=12BD=a2,∴EG2+GF2=EF2,∴EF⊥FG,∵EG∥AC,FG∥BD,∴BD⊥AC,∵BD⊥DC,DC⊂平面ACD,AC
解题思路:(Ⅰ)连接AC交BD于点H,连接GH.利用线面平行的性质定理及三角形中位线定理可得结论;(Ⅱ)以O为原点建立空间直角坐标系O-xyz所求值即为平面ABF的法向量与平面ADF的法向量的夹角的余
用向量的解法.设A1C1上的点坐标,为MEF上点坐标,为N可以使得MN同上面两条线段都垂直,使得MN的长度就是异面直线的距离.此时可以用向量垂直,内积为0求出M,N两点坐标,从而得到距离.
若AB\\DC,则,∠A+∠D=180(两直线平行同旁内角互补),∠A=∠C,所以∠D+∠C=180°,所以AD||BC(同旁内角互补两直线平行)所以:abcd是平行四边形(两组对边平行)楼上的证明过
[这题考察的是在立体图形中考察平面几何里三角形全等的判断,以及空间几何异面直线中垂线的判定!][在"[]"中的是说明部分,不要当答案也抄哇!][这里我用的是空间立体图形的几何解法!
因aecf是平行四边形,所以ea=cf,角aef=角cfe→角aeb=角cfd(互补),又因ae=df,所以△aeb全等于△cfd.所以ab=dc,角abe=角cdf→ab//dc.所以□abcd是平
设AC与BD的交点为O,连接OH和OE因为H为BC的中点,O也为BD的中点,根据中位线定理可知OH平行且等于½DC,即OH平行且等于½AB,即OH平行且等于EF,所以平面O
证明:连接EHHFFGGE因为F、H分别是CD、BD的中点所以FH平行BC同理可得EG平行BCEH平行ADGF平行AD所以FH平行EGEH平行GF所以四边形EGFH是平行四边形所以EF和GH互相平分
过D作DG∥EF交AB于G,交AB于H;设EF交AP于I.∵点A和点P关于EF对称∴∠AIF=90∵PG∥EF∴∠AHP=90∴∠APH+∠PAH=90∵∠PAH+∠BAP=90∴∠APH=∠BAP∵
设BC中点为M因为E是AB中点,M为BC中点那么EM为三角形ABC平行于BC边的中位线EM平行等于0.5AC,EM=a同理MF平行等于0.5BD,BF=a所以异面直线AC与BD所成角的大小即为EM与M
∵DE是∠ADC的角平分线∴∠ADE=∠EDF∵AE//DF∴∠AED=∠EDF∴∠ADE=∠AED∴AD=AE∴平行四边形ADFE是菱形
∵菱形ABCD∴CB平行于AD∴△BCE相似于△AFE∴BE/AE=CB/AF即BE/(3+BE)=3/(3+2)BE=9/2第二题在做,稍后再问:谢谢啊再答:(2)三角形EBD与三角形BDF相似.证
∵平行四边形ABCD∴ED∥BF∵ED=BF∴四边形BFDE是平行四边形∵EF⊥BD∴∠EOD=∠DOF=90°∴△EOD≌△FOD∴DE=DF∴四边形BFDE是菱形
(1)相等,当四边形ABCD是矩形时,由题意可知:a,b分别为矩形AEPM和PNCF的面积,打字母太麻烦了,简单分析一下,对角线分出两个全等三角形,面积肯定相等,六个三角形都对应相等就只剩下两个矩形,
因为平行四边形ABCD所以AD平行于BC,所以角DAC=BCA对角AOD=COB,因为对角线交点为O所以AO=CO因为AO=CO,角AOD=COB,DAC=BCA所以三角形AOE全等于三角形COF所以
取BC中点G,连接EG、FG则EG//AB,FG//DC且EG=1/2AB=4,FG=1/2DC=3则角EGF(或其补角a)就是所求异面直线所成的角在三角形EFG中,用余弦定理cos(角EGF)=(1
【缺一条件:AB//DC或AD//BC】哪个都可以,用AD//BC吧证明:∵AD//BC【已知】∴∠A+∠B=180º【两直线平行,同旁内角互补】∵∠A=∠C【已知】∴∠B+∠C=180
证明:(1)∵四边形ABCD是平行四边形∴AD∥BC,AB∥DC,∴∠F=∠EAD,∠BAF=∠E,∵∠FAB=∠F∴∠F=∠E∴CE=CF∴△CEF是等腰三角形(2)由题意得CE=CF=6∵∠F=∠
如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,(1)求证:△AOE≌△COF;(2)若AM:DM=2:3,△O
证明:∵平行四边形ABCD∴AD∥BC,AD=BC,AO=CO∴∠DAO=∠BCO∵∠AOE=∠COF∴△AOE≌△COF(ASA)∴AE=CF∴平行四边形AECF(对边平行且相等)