圆O与斜边相切,与CA.CB分别交于E.F求EF的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:01:32
如图,AB,DC,CB分别与圆O相切与E,F,G,且AB∥CD.

知识点:切线长相等.证明:∵AB、DC、CB分别与圆O相切,∴BE=BG,CG=CF,∴BC=BE+CF.

求三角形ABC中,AB=10, AC=8, BC=6, 经过点C且与边AB相切的动圆与CA . CB 分别相交于P. Q

AB=10,AC=8,BC=6,AC²+BC²=AB²所以∠C=90°△PQC是以C为直角顶点的直角△所以PQ一定是直径要使直径最小,那么C与AB上切点的连线过圆心,即也

在三角形ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ

△PQC是以C为直角顶点的直角△所以PQ一定是直径要使直径最小,那么C与AB上切点的连线过圆心,即也是直径此时,PQ=6×8÷10=4.8

圆O与圆O'相较于点AB,AC是圆O的直径,CA的延长线交圆O’于D,CB的延长线交圆O'于E,

若想求圆O的周长很简单,π*AC=6π.估计楼主想求圆O'的周长吧?!连接AE和AB.AC为直径,则∠ABC=90°.∴∠ABE=90°,AE为圆O'的直径.则∠ADE=90°=∠ABC.又∠C=∠C

如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段E

如图,∵∠ACB=90°,∴EF是直径,设EF的中点为O,圆O与AB的切点为D,连接OD,CO,CD,则OD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴EF为直径,OC+OD=EF

如图三角形ABC中,CA=CB,以BC为直径的圆O交AB与D,圆O的切线DE交AC于E

(1)求证:DE⊥ACBC为直径,∠CDB=90°;∠CDA=∠CDB=90°;CA=CB,∠A=∠B,所以∠ACD=∠BCD,∠B=∠CDE,[弧DC所对圆周角=弧DC所对圆切角]∠CDE+∠ACD

如图,AB,DC,CB分别与圆O相切于E,F,G,且AB平行CD.(1)试判断BE,CF,BC之

e等于bg,cf等于cg,bg+cg=bc所以be+cf=bc再答:因为都与圆相切,所以角ebo=角gbo,角gco=角fco因为平行,所以角ebc+角gcf=180度,所以角obc+角bco=90度

如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段P

如图,设QP的中点为F,圆F与AB的切点为D,连接FD、CF、CD,则FD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,FC+FD=PQ,∴FC+FD>CD,∵当点F在直角三角形ABC

如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段

结合题意,易知△ABC为RT△,∠C=90°,即知EF为圆的直径,设圆与AB的切点为D,连接CD,当CD垂直于AB时,即CD是圆的直径的时候,EF长度最小,最小值是9×1215=365.故选B.

如图,AB是圆O的直径,CB、CD分别与圆O相切于点B、D,求证AD平行OC

是OP吧?连接OP,OD,∵PD=PB,OB=OD,OP是公共边∴△PDO≌△PBO∴∠POD=∠POB=∠BOD/2∵∠A=∠BOD/2∴∠A=∠POB∴AD‖OP

圆O与圆O'相较于点A B AC是圆O的直径CA的延长线交圆O'于D CB的延长线交圆O'于ECE=10,DE=AC=6

连接AE和AB  ∵AC为圆O的直径  ∴∠ABC=90°  ∴∠ABE=90°  又∵AE为圆O'的直径.  ∴∠ADE=90°=∠ABC.  又∠C=∠C  ∴△CBA∽△CDE  ∴AC/EC=

在△ABC中,AB=10,AC=8,BC=6,经过点C的且与边AB相切的动圆与CA,CB分别相交与P,Q,则PQ的最小距

过C作CH⊥AB于H,设该圆为O,切AB于D,连OC,OD∵AB=10,AC=8,BC=6∴△ABC为直角三角形,∠ACB=90∴PQ为⊙O直径∴PQ=OC+OD易知CH=AC*BC/AB=6*8/1

如图,已知点O为Rt三角形ABC斜边AC上一点,以O为圆心,OA长为半径的圆O与BC相切于点E,与AC相交于点D,连接A

(1)在三角形AOE中,因为OA=OE,所以角OAE=角OEA,因为BC与圆O相切,所以OE垂直于BC,则角BAE=角OEA,所以角BAE=角OAE,则AE平分角CAB(2)没图,角1在哪

如图,PA、PB分别与圆O相切于A、B两点,作直径AC,连接BC,求证:OP‖CB

证明:连接AP∵PA,PB是圆O的切线∴PA=PB,∠APO=∠BPO∴PO⊥AB∵AC是圆O的直径∴∠ABC=90°即BC⊥AB∴PO‖BC

在三角形ABC中,AB=10,AC=8,BC=6,过点C且与边AB相切的动圆与CB,CA交于点E,F.求EF的长

长度不能确定,你问的应该是EF最短是多少吧?如果最短,就是4.8AB=10,AC=8,BC=6已经可以断定角C是直角了最短的直径就是斜边的高,真的,这样的圆太多了,EF没法求.除非最短

如图1,AB为圆O的直径,AD与圆O相切于点A,DE与圆O相切于点E,点C位DE延长线上一点,CE=CB.证BC为切线

1.证明:连结OC因为CE=CB,半径OE=OB,OC是公共边所以△OEC≌△OBC(SSS)则∠OEC=∠OBC又DE与圆O相切于点E,即∠OEC=90°则∠OBC=90°所以BC是圆O的切线,且以

三角形ABC的内切圆圆O与三边分别相切与DEF三点,AB,BC,CA,CE,AF,BD这六条边有什么数量关系?如何证明?

由于圆O为内切圆,因此O为三角形ABC之内心,即为三条角平分线交点.因此AE=AF,BF=BD&CE=CD.因此,AB=AF+BF=AF+BDBC=BD+CD=BD+CEAC=CE+AE=CE