圆O与斜边相切,与CA.CB分别交于E.F求EF的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:01:32
知识点:切线长相等.证明:∵AB、DC、CB分别与圆O相切,∴BE=BG,CG=CF,∴BC=BE+CF.
相切.连接OD,可以证明OD垂直于CD.所以相切.
AB=10,AC=8,BC=6,AC²+BC²=AB²所以∠C=90°△PQC是以C为直角顶点的直角△所以PQ一定是直径要使直径最小,那么C与AB上切点的连线过圆心,即也
△PQC是以C为直角顶点的直角△所以PQ一定是直径要使直径最小,那么C与AB上切点的连线过圆心,即也是直径此时,PQ=6×8÷10=4.8
若想求圆O的周长很简单,π*AC=6π.估计楼主想求圆O'的周长吧?!连接AE和AB.AC为直径,则∠ABC=90°.∴∠ABE=90°,AE为圆O'的直径.则∠ADE=90°=∠ABC.又∠C=∠C
如图,∵∠ACB=90°,∴EF是直径,设EF的中点为O,圆O与AB的切点为D,连接OD,CO,CD,则OD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴EF为直径,OC+OD=EF
(1)求证:DE⊥ACBC为直径,∠CDB=90°;∠CDA=∠CDB=90°;CA=CB,∠A=∠B,所以∠ACD=∠BCD,∠B=∠CDE,[弧DC所对圆周角=弧DC所对圆切角]∠CDE+∠ACD
e等于bg,cf等于cg,bg+cg=bc所以be+cf=bc再答:因为都与圆相切,所以角ebo=角gbo,角gco=角fco因为平行,所以角ebc+角gcf=180度,所以角obc+角bco=90度
如图,设QP的中点为F,圆F与AB的切点为D,连接FD、CF、CD,则FD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,FC+FD=PQ,∴FC+FD>CD,∵当点F在直角三角形ABC
结合题意,易知△ABC为RT△,∠C=90°,即知EF为圆的直径,设圆与AB的切点为D,连接CD,当CD垂直于AB时,即CD是圆的直径的时候,EF长度最小,最小值是9×1215=365.故选B.
是OP吧?连接OP,OD,∵PD=PB,OB=OD,OP是公共边∴△PDO≌△PBO∴∠POD=∠POB=∠BOD/2∵∠A=∠BOD/2∴∠A=∠POB∴AD‖OP
连接AE和AB ∵AC为圆O的直径 ∴∠ABC=90° ∴∠ABE=90° 又∵AE为圆O'的直径. ∴∠ADE=90°=∠ABC. 又∠C=∠C ∴△CBA∽△CDE ∴AC/EC=
过C作CH⊥AB于H,设该圆为O,切AB于D,连OC,OD∵AB=10,AC=8,BC=6∴△ABC为直角三角形,∠ACB=90∴PQ为⊙O直径∴PQ=OC+OD易知CH=AC*BC/AB=6*8/1
(1)在三角形AOE中,因为OA=OE,所以角OAE=角OEA,因为BC与圆O相切,所以OE垂直于BC,则角BAE=角OEA,所以角BAE=角OAE,则AE平分角CAB(2)没图,角1在哪
证明:连接AP∵PA,PB是圆O的切线∴PA=PB,∠APO=∠BPO∴PO⊥AB∵AC是圆O的直径∴∠ABC=90°即BC⊥AB∴PO‖BC
长度不能确定,你问的应该是EF最短是多少吧?如果最短,就是4.8AB=10,AC=8,BC=6已经可以断定角C是直角了最短的直径就是斜边的高,真的,这样的圆太多了,EF没法求.除非最短
1.证明:连结OC因为CE=CB,半径OE=OB,OC是公共边所以△OEC≌△OBC(SSS)则∠OEC=∠OBC又DE与圆O相切于点E,即∠OEC=90°则∠OBC=90°所以BC是圆O的切线,且以
由于圆O为内切圆,因此O为三角形ABC之内心,即为三条角平分线交点.因此AE=AF,BF=BD&CE=CD.因此,AB=AF+BF=AF+BDBC=BD+CD=BD+CEAC=CE+AE=CE