在三角形ABC中 三角形内一点 60 20 10 40

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:55:30
在三角形ABC中,AB=AC,P为三角形ABC内一点,且PC大于PB.求证:∠APB大于∠APC.

证明:过点A作AD⊥BC,交BC于点D.易知AD也是中线和角平分线.下面,我们首先来证明点P位于△ABD内.过点P作PE⊥BC,交BC于点E,则有BE²=PB²-PE²C

初三数学题——关于旋转 在三角形abc中,角bac等于九十度,ab等于ac,p是三角形abc内一点.

135°过A做AE⊥AP,且AE=AP,连接EC,EP则△APE为等腰直角三角形易证△ABP≌△AEC∴BC=EC=1∵PE=2*根号2∴∠PEC=90°∴∠APB=∠AEC=135°有点简略,但你应

已知在三角形ABC中,AB=AC,O是三角形ABC内一点,且OB=OC,判断AO与BC的位置关系,并说

AO垂直BC.因为AB=AC,OB=OC,AO=AO,所以三角形ABO全等于三角形ACO,所以角BAO=角CAO,因为等腰三角形的顶角平分线与底边上的高重合,所以AO垂直BC.也可以用全等.结论是垂直

已知在三角形abc中,ab=ac,p是三角形abc内一点,且角apb=角apc

证明:把⊿APB绕点A旋转至⊿ADC的位置(如图).则∠ADC=∠APB=∠APC;DC=PB,AD=AP.∴∠ADP=∠APD.∴∠CDP=∠CPD(等式性质)则PC=DC=PB.

如图,在三角形ABC中,AC=BC>AB,点P为三角形ABC所在平面内一点,且点P与三角形ABC的

选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,

在三角形ABC中,角C=90度,P为三角形内一点,且三角形 (14 16:59:16)

证明已知ΔABC是直角三角形,AB为斜边,记AB=c,BC=a,CA=b.则有:c^2=a^2+b^2.(1)满足:S(PAB)=S(PBC)=S(PCA),易证P是RtΔABC的重心.设mc,ma,

在三角形ABC中,AC=BC>AB,点P为三角形ABC所在平面内一点,且点P与三角形ABC的任意两个顶点构成三角形PAB

(2008•大庆)如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC,△PAC均是等腰三角形,则满足上述条件的所有点P

在三角形ABC中,角C=90°,P为三角形内一点,且S三角形PAB=S三角形PBC=S三角形PCA.

疑似::|PA|平方+|PB|平方==(5/9)AB^2设△ABC的边BC=a,AC=b,过P作PE⊥AC,PF⊥BC,垂足为E,F因为S三角形PAB=S三角形PBC=S三角形PCA所以△APC面积=

如图1,P是三角形ABC内一点,连接PA、PB、PC,在三角形PAB、三角形PBC和三角形PAC中

你好!(1)由直角三角形斜边上的中线等于斜边的一半得到BD=CD,所以∠DBC=∠DCB,又因为∠BEC=∠ACB=90°,所以△BEC∽△ACB,(2)由相似三角形及p是三角形自相似点,得到∠B+∠

在三角形ABC中,

已知,AD=AC,BE=BC,可得:∠ADC=∠ACD,∠BEC=∠BCE,即有:∠EDC=∠ACD=∠ACE+∠ECD,∠DEC=∠BCE=∠BCD+∠ECD,∠ECD=180°-(∠EDC+∠DE

在三角形ABC中,AB>AC,P为三角形内一点,且PB=PC,求AC>AP

已知三角形ABC中,AB=AC,P是三角形内一点,且有角APB>角APC,求证:PB角APC所以角APB>角ADB因为AD=AP所以角ADP=角APD所以角APB-角APD>角ADB-角ADP所以角B

三角形ABC 中,P是三角形ABC内一点,试证明:角BPC> 角BAC

解题思路:本题主要考察了三角形外角和内角的关系的相关知识点。解题过程:

在三角形ABC中,AB是最长边,P是三角形内一点,证明PA+PB>PC

PA+PB>AB下证PC一定比AC和BC中至少一个小(反证法)假设PC>AC且PC>BC以C为圆心,PC的长为半径作圆,动点P的轨迹即圆弧都落在△ABC外,与题设中P是△ABC内一点矛盾故假设不成立∴

在三角形ABC中,AC=BC>AB,点P为 三角形ABC所在平面内一点,且点P与三角形ABC 的任意两个顶点构成三角形P

6个我们老师讲过了再问:能不能给个过程啊?再答:分别作出三角形的三边的垂直平分线,三线交于同一点,这点就满足条件;A为圆心AB为半径画圆.以C为圆心CA为半径画圆.在AC左侧得一点.同理BC右侧一点.

在三角形ABC中

解题思路:根据题意,由正弦定理和余弦定理可求解题过程:见附件最终答案:略