在极坐标系中,过圆p=6cosθ
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:17:59
先将极坐标变成直角坐标得y-x=a即直线为y=x+ap^2=2pcosθ-4psinθx^2+y^2=2x-4y圆方程是(x-1)^2+(y+2)^2=5将直线方程代入圆方程得2x^2+2(a+1)x
由题意可知圆的标准方程为:(x-2)2+y2=9,圆心是(2,0),所求直线普通方程为x=2,则极坐标方程为ρcosθ=2.故答案为:ρcosθ=2.
p^2=6pcos@x^2+y^2=6xx^2-6x+y^2=0x^2-6x+9-9+y^2=0(x-3)^2+y^2=9所以圆心(3,0)直线垂直于极轴所以直线为:x=3极坐标方程:pcos@=3看
原极坐标可化为X^2+Y^2-6COSX=0(两边同乘以P)所以相当于是过(3,0)的直线啦那自己再画个三角形,确定一下三角关系就是3=PCOSθ
p=6cosa化为直角坐标方程p^2=6pcosax^2+y^2=6x(x-3)^2+y^2=9圆心(3,0)垂直于x轴的直线x=3化为极坐标方程pcosa=3
极坐标圆C:ρ=√2cos(θ+π/4)=√2(cosθcosπ/4-sinθsinπ/4),则ρ=cosθ-sinθ①,因为极坐标(ρ,θ)与直角坐标(x,y)的关系为:x=ρcosθ,y=ρsin
p=(2√2)cosθp^2=2√2pcosθ变成直角坐标系x^2+y^2=2√2xx^2-2√2x+2+y^2=2(x-√2)^2+y^2=2圆心C是(√2,0)直线过C(√2,0)且与OC垂直∴x
圆为切于极轴,圆心在(2,pai/2),半径2pcosθ=0,符合题意另外一条是psinθ=0,重合于极轴
极坐标方程为ρ=6cosθ-6sinθ+9ρ可化为ρ2=6ρcosθ-6ρsinθ+9,直角坐标方程为(x-3)2+(y-3)2=27.直线的标准的参数方程为:x=−1+45ty=−35t(t为参数)
原题目给的直线方程,可以利用“辅助角”把它化简为图中的式子.顺便,把直线方程的推导过程的图,画了出来.供参考.这对于学习极坐标知识,很有好处.答:最大值为4.
可以这么做,不明白可以与我说.根据直角坐标与极坐标的转换关系x=rcosθy=rsinθ有圆的方程为:x^2+y^2=16直线方程为:x+√3y=6设圆上任意一点坐标为(4cosθ,4sinθ),其中
将方程p=4cosθ+3sinθ两边都乘以p得:p2=4ρcosθ+3ρsinθ,化成直角坐标方程为x2+y2-4x-3y=0.圆的半径为2.5.故填:2.5.
P^2=Pcosθ换成直角坐标方程x^2+y^2-x=0(x-1/2)^2+y^2=1/4θ∈[0,π],p∈R所以表示在直角坐标系中,圆心为(1/2,0),半径为1/2的半圆弧(x轴上方的包括与x轴
估计题有问题,ρcosθ=3为直线(x=3), 前者为心型线, 二者无交点.
θ=π/4p=2cosθ=2×√2/2=√2交点的极坐标是(√2,π/4),(0,0)
在极坐标系中ρsinθ=yρcosθ=xρ²=x²+y²直线ρ(sinθ-cosθ)=ay-x=a曲线ρ=2cosθ-4sinθρ²=2ρcosθ-4ρsinθ
p=√2cosθ圆心在极轴上,直径就是√2∴圆心的极坐标(√2/2,0)
p=4cosθ两边同乘以p,得:p^2=4pcosθ而p^2=x^2+y^2,pcosθ=x所以可化为x^2+y^2=4x(x-2)^2+y^2=4过点(1,0)且与x轴垂直的曲线与(x-2)^2+y
方法一,ρ=4cosθ,两边同时乘以ρ,得ρ^2=4ρcosθ,利用ρ^2=x^2+y^2,x=ρcosθ,化成直角坐标方程x^2-4x+4+y^2=4,(x-2)^2+y^2=4,容易看出它是一个圆