在正方形abcd中 点p在射线cb上点q在ba延长线上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:39:44
(1)过E作PB垂线,交于E‘连接EF,E'A.由中位线定理得EE'//=1/2BC//=AF.所以平面AFEE‘为平行四边形.则EF//E'A又E'A在面PBC内,所以EF//面PAB字数限制只能一
1、过P作AB、BC垂线,足分别为HI,则HPIB为正方形,PH=PI,又∵∠EPF=∠HPI=RT∠,∴∠EPH=∠FPI,∴△PEH≌△PFI,∴PE=PF2、由第1小题可知△PEF为等边直角△,
正方形对角线与边夹角45°,等腰三角形PEB的高为1-x/根号2,底边长为2乘以根号2乘以X面积为相乘除2.X大于0小于根号2X=根号2/2时最大
第一问见图\x0d第二问过P作PG⊥延长线于G\x0d当以P、F、E为顶点的三角形也与△ABE相似时,\x0d①△ABE∽△PFE\x0d可推出∠3=∠4\x0d所以PA=PE\x0dPE用勾股定理表
、已知:在矩形AOBC中,OB=4,OA=3,分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B,C重合),过F点的反比例函数y=k/x(k>0)的图像
设BP与AE的交点为O∵AB=BC,∠ABE=∠CBE=45°,BE=BE∴△ABE≌△CBE∴∠BAE=∠BCE∵P是AD中点易证:△ABP≌△DCP∴∠ABP=∠DCP∵∠BCE+∠DCP=90°
证明:(1)①过点P作GF∥AB,分别交AD、BC于G、F.如图所示.∵四边形ABCD是正方形,∴四边形ABFG和四边形GFCD都是矩形,△AGP和△PFC都是等腰直角三角形.∴GD=FC=FP,GP
(1)证明:∵AD∥BC,∴∠PAF=∠AEB.∵∠PFA=∠ABE=90°,∴△PFA∽△ABE.(2)若△EFP∽△ABE,则∠PEF=∠EAB.∴PE∥AB.∴四边形ABEP为矩形.∴PA=EB
(1)证明:∵四边形ABCD是正方形,∴AD∥BC,且∠ABE=90°,∴∠PAF=∠AEB,又∵PF⊥AE,∴∠PFA=∠ABE=90°∴△PFA∽△ABE;(2)①当△EFP∽△ABE,且∠PEF
求证BP=EC+BF证明:∵ABCD为正方形∴PC+PB=BC=AB∵AP⊥EF,CB⊥AB∵在直角三角形PCE和直角三角形PBF中,∠BPF=∠CPE∴△PFB∽△PEC∴PB/PC=BF/CE(相
证明出DF⊥BP,EF⊥BP∴∠DFE为所求角的二面角设PD=DC=1,则DE=√2/2△PFE相似△PCB得EF=√6/6△DPF相似△BPD得DF=√6/3∴cos∠DFE=1/2∠DFE=60°
1,bp方=ab*bf再问:再答:AB/BP=(AB-BP)/CE整理上式得BP方=AB*(BP-CE)综上,BF=BP-CE再问:再答:2,CE=BP+BF方法与一相同
解题思路:本题主要考查相似三角形的判定和性质,掌握相似三角形的对应边成比例是解题的关键,注意分类思想的应用.解题过程:
可以求得AE=2√5在三角形AEP中其面积=AP*AB/2=AE*PF/2所以可得PF=2/√5*x在三角形AFP中可得AF=x/√5所以FE=2√5-x/√5因为相似所以PF/FE=AB/BE=2所
1、∵ABCD是正方形∴∠DAB=∠B=90°∵PF⊥AE∴△PFA是Rt△∴∠BAE+∠AEB=90°∠PAF+∠BAE=90∴∠PAF=∠AEB∴Rt△PFA∽Rt△ABE2、当∠APE
如图,正方形ABCD的边长为8,E是BC边的中点,点P在射线AD上,过P做PF⊥AE于F 当点P在射线AD上运动时,设PA=x,使P,F,E为顶点的三角形与三角形AB
(1)在△CPD和△BCP中,PC=PC,BC=CD,∠BCP=∠PCD,所以△CPD全等于△BCP(SAS),所以PD=BP,又因为PE=PB,所以PE=PD.所以∠PDC=∠PBC,又因为PE=P
设p到bc的垂足为F,则pc=√2-xcf=pf=(√2-x)/√2bf=1-cf=1-(√2-x)/√2因为pb=pe,则bf=ef,故be=2bf=2*[1-(√2-x)/√2]则三角形面积y=1
因为PD=DC,所以三角形PDC是等腰RT三角形.又因为E是PC中点,所以DE垂直PC.又因为BC垂直平面PDC(BC垂直DC且PD垂直BC),所以BC垂直DE.DE垂直PC,BC垂直DE,可得DE垂