在正方形abcd中ef分别为ad,cd中点...求证ec垂直bf
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:26:41
提示:延长CB到H,使得BH=DF,连AH.证三角形AEH全等于三角形AFE.
延长CD到M,使DM=BE,连接AM 由SAS容易证明△ABE≌△ADM 所以∠BAE=∠DAM,AE=AM,S△ABE=S△ADM 因为∠BAE+∠DAF=
延长EC至F'使CF'=AF,连BF'则容易证明两个直角三角形BAF和BCF'全等所以,∠ABF=∠CBF'BF=BF'BE=BEEF'=EC+CF'=EC+AF=EF所以,△FBE≌△F'BE所以,
,在AB上取BM=BE,连接EM,∵ABCD为正方形,∴AB=BC,∵BE=BM,∴AM=EC,∵∠1=∠2,∠AME=∠ECP=135°,∴△AME≌△ECP,∴AE=EP;(3)存在.顺次连接DM
证明:(1)∠EAF的大小没有变化.根据题意,知AB=AH,∠B=90°,又∵AH⊥EF,∴∠AHE=90°∵AE=AE,∴Rt△BAE≌Rt△HAE,∴∠BAE=∠HAE,同理,△HAF≌△DAF,
延长EB到点G,使BG=DF,连接CG∵AE+EF+FA=2,正方形边长是1∴EF=2-AE-AF=(1-AE)+(1-AF)=BE+DF=EG易证△BCG≌△DCF可得CG=CF,∠BCG=∠DCF
如图.⊿CDF绕C逆时针旋转90°,到达⊿CBG.EF=2-(AF+AE)=FD+EB=BG+EB=EG,CG=CF,CE=CE.∴⊿CEF≌⊿CEG(SSS)∠ECF=∠ECG,而∠∠ECF+∠EC
⑴证明:把⊿ABE绕A逆时针旋转90º,到达⊿ADG∵EF=BE+DFFG=FD+BE∴FG=FE又 AE=AGAF=AF∴ΔAFE≌ΔAFG ﹙SSS﹚∴∠FAE=
证明,在延长CB的延长线上取点M,使BM=DF,连接AMAB=AD,∠ABM=∠ADF=90°,故,△ABM≌△ADF因此,AF=AM,∠BAM=∠DAF,又,∠EAF=45°,∠BAD=90°,故,
EF=AP.理由:∵PE⊥BC,PF⊥CD,四边形ABCD是正方形,∴∠PEC=∠PFC=∠C=90°,∴四边形PECF是矩形,连接PC,∴PC=EF,∵P是正方形ABCD对角线上一点,∴AD=CD,
作DQ‖FE,CP‖HG.则DQ‖=FE,CP‖=HG[平行四边形对边],CP⊥DQ.∠DCP=90º-∠CDQ=∠QDA,⊿DCP≌⊿AQD.CP=DQ.EF=GH
证明:过点A作AQ⊥BC于Q,过点D作DT⊥BC于T,过点E作EP⊥AD交DA的延长线于点P,过点F作FS⊥AD的延长线于S,过点M作MN⊥AD于N∵AQ⊥BC,DH⊥BC,AD∥BC∴矩形AQHD∴
证明,连接AC并取AC中点P,连接EP,PF在三角形SAC中,FP是中位线,所以FP//SA,所以FP//平面SAD又在正方形ABCD中,P是AC中点,所以P也是BD的中点,所以EP也是中位线且EP/
那个回答人的意思是假设他们是对应点,但是这也符合实际啊,相当于你把正方形OEFG平移上去,使得F与O点重合,这样再一观察,他们就是对应点啦,当然这只是假设,还有就是他做的那个M点,因为可以证明出△ME
(1)证明:∵BE=DF,BC=CD,∠EBC=∠CDF,∴△CEB≌△CFD,∴CE=CF;(2)证明连接AG,CG在Rt△EAF中,∵G是斜边EF的中点,∴AG=GE=GF,又∵△EBC≌△FDC
侧棱SD⊥底面ABCD这一条件多余.证明:在平面SDC内作FG平行于CD,交SD与点G,连接AG;过F作三角形CDS边CD上的高FH,垂足为H,连接EH因为FG平行于CD,且CD平行于AE(已知+正方
过F作FG⊥AB于G.易证△EFG≌△PAB,得EF=PA=13cm
(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2
看不清图再问:再答:再问:EF//AB再答:��再答:再答:��������
很简单嘛.连接ab1ab1分别与a1d1和a1b垂直所以ab1与面a1d1b垂直因fe//ab1所以fe与面a1d1b垂直fe属于面def得证