在直角三角形ABC在,若他的斜边长为4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:17:17
看不到你的图,但我想这个题主要是考察两点关于直线对称.与直角三角形abc全等且有一条公共边的所有直角三角形一共就有3个,与ab共边,其第3点必是c点关于ab的对称点,所以知道abc三点的坐标,就能写出
再问:不理解方程再答:勾股定理再答: 再问:我的意思是,不会解那个方程、再答:下面不是写了解法吗??再答: 再问:好吧、谢谢
再答:回答如果满意的话,请点击右上角的满意回答哦
证:EF^2=AE^2+BF^2延长ED至G,使DG=DE,连接GF,GB因为DG=DE,DE垂直DF所以GF=EF因为BD=DA,DG=DE,角BDG=角ADE所以三角形BDG全等于三角形ADE所以
反例:A=120,B=30,则sinA=cosB=sin60,此三角形显然不是直角三角形
证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH
要证明一个命题的真假,一种方法是正向推理;另外的方法有逆向推理采用正向推理,可以证明在任何情况下,命题都成立;而采用逆向推理,则只要找出一个不符合结论的例子,就可以推翻命题.本题采用逆向推理,设∠A=
解题思路:用锐角三角函数、勾股定理求解。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/inclu
=(√2-1)/21方法1首先证明内切圆半径r的最大,这时直角三角形一定是等腰直角三角形,这时斜边长c=1,两直角边各为√2/2,内切圆圆心连结A,B,C,得3个小三角形,3个小三角形的高均为内切圆半
当三角形为直角三角形时由面积法c^2=4*a*b/2+(b-a)^2=a^2+b^2即:在直角三角形中有c^2=a^2+b^2现在要反过来看是否成立,即:c^2=a^2+b^2要推出:直角三角形?c^
cosC=(a2+b2-c2)/2absinC由题意得a2+b2-c2=0即cosC=0又因为在三角形中所以0
sinAsinB=cosAcosB,cosAcosB-sinAsinB=0,cos(A+B)=0,因为0
1'点N在AB上.因为AB=8,BC=6,所以AM=5.根据三角形中线性质可知点N平分AB.即AN=4.得到三角形BMN的高为3,面积为3BN(中线长度我不会求,初三的学过了么?)2'点N在AC上.若
连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5
证明:△ABC为等腰直角三角形,所以∠A=∠B=45∠DME=45,所以∠AMD+∠BME=135∠AMD+∠ADM=180-∠A=135所以∠BME=∠ADM又有∠A=∠B所以△AMD∽△BEM,A
三个分别是圆外,圆上,圆外,用勾股定理可以算出来AB=5,然后可以算出高CD=2.4再问:额,谢谢啦再答:第三个是圆内…再答:写错了,骚瑞再问:有没有详细一点的呢?再答:勾股定理你应该熟悉吧…再问:嗯
=(√2-1)/2首先证明内切圆半径r的最大,这时直角三角形一定是等腰直角三角形,这时斜边长c=1,两直角边各为√2/2,内切圆圆心连结A,B,C,得3个小三角形,3个小三角形的高均为内切圆半径r,3
画图很容易,就根据等比原理,设正方形边长为X,这样的话,斜边为6的三角形直角边长分别为X和2X,小三角形边长分别为0.5X和X,所求为0.5*1.5X*3X-X*X=1.25X*X,由直角三角形原理,
如图:(x-c)²+y²=9.x²+(y-c)²=7. x²+y²=1.消去x,y
反复运用勾股定理、等量代换就可以了.PA²=(AD+PD)²1PB²=(BD-PD)²2其中AD=BDPC²=CD²+PD²=AD