复变函数v=u2,证明f(z)=c

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:40:13
复变函数 f(z)=|z| 函数在何处可导何处解析

因为f(z)=|z|当趋于0-时f(z)=|-1;当趋于0+时f(z)=|1;右极限不等于左极限.所以f(z)=|z|在z=0处不可导而在处0以外的其他地方都可导且解析.这判断这种是有规律的,你要好好

讨论复变函数的可导性f(z)=x+2iy

不满足C-R方程,不可导

复变函数,证明函数f(z)=e^z在整个复平面解析

e^z=e^(x+iy)=e^x(cosy+isiny),设实部u=e^xcosy,虚部v=e^xsiny∂u/∂x=e^xcosy,∂u/∂y=-e^

若函数f(z)=u+iv在区域D内解析 且u+2v=3 证明f(z)为常数 这道题怎么算 复变函数与积分变换

利用Cauchy-Riemann方程即可.由题意有au/ax=av/ay,au/aya=-av/ax,同时又有au/ax+2av/ax=0,au/ay+2av/ay=0,四个方程联立解得au/ax=a

复变函数题:设函数f(z)=u+iv在区域D解析,满足8u+9v=2012,证明f(z)在D内为常数

f(z)在D内解析,满足柯西-黎曼方程:又满足8u+9v=2012,对该式求偏导:将柯西-黎曼方程代入可得:所以f(z)在D内必为一常数

复变函数求教证明:若函数f(z)在D内解析,γ是一条周线,γ及其内部⊂D,f(z)在γ上取实值,f(z)在D

取实值说明虚部等于零.因此虚部必在曲线内部取到极值,由于虚部是调和函数,它必须是常数.因此从Cauchy-Riemann方程可知f也是常数.

复变函数 f(z)=|z| 讨论可导性.

你好此函数仅在原点处可导谢谢

证明或举反例:如果U1 U2 W是V的子空间,使得V=U1⊕W V=U2⊕W 那么U1=U2 (V是F上的向量空间)

反例:取V为2维向量空间,W为向量(1,0)生成的子空间,U1为向量(0,1)生成的子空间,而U2为向量(1,1)生成的子空间.易验证U1∩W={0},U2∩W={0},再由维数讨论可得V=U1⊕W,

设F(u,v)是可微函数,而方程F(x+z/y,y+z/x)=0,确定的函数z=(x,y) 证明x*(αz/αx)+y*

设F关于u和v的偏导函数分别记为f'1,f'2,下记f'1(x+z/y)=a,f'2(y+z/x)=b(a和b都是关于x,y,z的表达式)则由F(x+z/y,y+z/x)=0由复合函数偏导法则αF/α

复变函数一道若u(x,y)与v(x,y)分别是解析函数f(z)的实部与虚部,且f(z)求导不等于0,试证明u(x,y)=

证明:因为f(z)解析,所以f'(z)=du/dx+idv/dx且du/dx和dv/dx不同时为0由隐函数求导法曲线u(x,y)=c1的斜率k1=-(du/dx)/(du/dy)同理导法曲线u(x,y

复变函数问题,z=0是函数f(z)=1/[z^2(e^z+1)]的多少级极点?

是二级极点!满足极点定义z0=0;n=2;φ(z0)=e^0+1=2不等于零再答:��ӭ׷�ʣ�

简单的复变函数题设f(z)={ xy/(x*x+y*y),z不等于0:0,z等于0;证明;f(z)在z=0处不连续.

当点(x,y)沿x轴和y轴趋于(0,0)时,f(z)的极限都是0.但它沿直线y=mx趋于(0,0)时,limf(x,y)=lim(mx*x/(x*x+m*m*x*x))=m/(1+m*m),对于不同的

一道复变函数题,由下列已知调和函数求解析函数f(z)=u(x,y)+iv(x,y).并写成关于z的表达式v(x,y)=a

没有分母的y^2更容易,明显上面的做法使得问题复杂了.au/ax=x/(x^2+y^2),则u=0.5ln(x^2+y^2)+c(y),再由au/ay=-av/ax,得c'(y)=0,因此c(y)=C

复变函数 设f(z)=exp(1/z^m)/(tanz)^n,其中m,n均为正整数,证明lim(f)不存在(z趋近于0)

考虑序列a_k=k^(-1/m)(取实根),有k趋于无穷时a_k趋于0且1/(a_k)^m=k,而tan(a_k)趋于0.f(a_k)的分子e^k趋于无穷而分母趋于0,f(a_k)趋于无穷.证明极限不

复变函数 f(z)=(3z^2+i)^3怎么求导

这个就把z看成实变量对z求导就行

复变函数问题f(z)=e的z次方在z=0处解析吗?

设z=x+iyf(z)=e^z=e^(x+iy)=e^x·e^(iy)=e^xcosy+ie^xsinyRe[f(z)]=e^xcosy,Im[f(z)]=e^xsiny令u(x,y)=e^xcosy