作业帮 > 综合 > 作业

复变函数,证明函数f(z)=e^z在整个复平面解析

来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/06 08:56:37
复变函数,证明函数f(z)=e^z在整个复平面解析
学的不太好,
e^z=e^(x+iy)=e^x(cosy+isiny),设实部u=e^x cosy,虚部v=e^x siny
∂u/∂x=e^x cosy,∂u/∂y=-e^x siny
∂v/∂x=e^x siny,∂v/∂y=e^x cosy
四个偏导数均是初等二元函数的组合,所以都连续
且柯西黎曼方程
∂u/∂x=∂v/∂y=e^x cosy
∂v/∂x=-∂u/∂y=e^x siny
对任意x,y成立,
所以e^z在整个复平面上解析
再问: 太谢谢了,能加一下qq吗?还有几个不太懂得地方想问问
再答: 如果要QQ的话一会私信给你,或者在下面追问也行
再问: 私信我吧,谢谢了