如何判断一个矩阵能否对角化
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:41:11
|A-λE|=(2-λ)(3-λ)^2.所以A的特征值为2,3,3(A-2E)X=0的基础解系为a1=(1,0,0)'.(A-3E)X=0的基础解系为a2=(0,1,0)',a3=(-2,0,1)'.
1.所有特征根都不相等,那么不用说,绝对可以对角化2.有等根,只需要等根(也就是重特征值)对应的那几个特征向量是线性无关的,那么也可以对角化,如果不是,那么就不能了.综合起来是说的:有n个线性无关的特
将矩阵A的特征多项式完全分解,求出A的特征值及其重数若k重特征值都有k个线性无关的特征向量,则A可对角化.否则不能角化.实对称矩阵总可对角化,且可正交对角化.
对于n阶矩阵A,其可对角化的充要条件是A有n个线性无关的特征向量,具体点说,就是A要有n个互异特征值,或者有n-m个互异特征值和m重特征值且这m个特征值有m个特征向量.另一种判别方法:实对称矩阵必可对
n级矩阵A可对角化<=>A的属于不同特征值的特征子空间维数之和为n.实际判断方法:(1)先求特征值,如果没有相重的特征值,一定可对角化;(2)如果有相重的特征值λk,其重数为k,那么你通过解方程(λk
实对称矩阵一定可以对角化,即一定存在可逆矩阵p,使P^(-1)AP=∧,且所求的可逆矩阵P也没必要正交化,单位化(这是求正交矩阵的方法),除非题目要求求正交矩阵Q,对角化A则需要再正交化,单位化,所以
1.所有特征根都不相等,那么不用说,绝对可以对角化2.有等根,只需要等根(也就是重特征值)对应的那几个特征向量是线性无关的,那么也可以对角化,如果不是,那么就不能了.综合起来是说的:有n个线性无关的特
有个定理是特征根的重数不小于特征向量的个数,那么你说:“特征单根对应的齐次方程组系数矩阵的秩小于n-1”就不正确了,所以并不矛盾再问:特征根的重数不小于特征向量的个数,如果是单根呢?那它的基础解系一定
1.只要取A为单位阵,B是某个不可对角化矩阵.2.A,B可同时对角化,即存在可逆矩阵T使C=T^(-1)AT与D=T^(-1)BT均为对角阵.作为对角阵,易见C,D可交换,即有T^(-1)ABT=CD
可逆即可相似对角化
详见:\x0d
n阶方阵A可对角化A有n个线性无关的特征向量k重特征值有k个线性无关的特征向量
|A-λE|=1-λ-1-222-λ-2-2-11-λc1+c3-1-λ-1-202-λ-2-1-λ-11-λr3-r1-1-λ-1-202-λ-2003-λ=(-1-λ)(2-λ)(3-λ).所以A
一个矩阵能对角化的充分必要条件是存在n个线性无关的特征向量.所以你题目中的2阶矩阵若能对角化就要存在2个线性无关的特征向量.现在矩阵M的两个特征值相等,全为3设矩阵M的特征值为λ,存在非零向量x,使得
(D)不能对角化因为特征值为0,0,3对特征值0,r(A)=2,AX=0的基础解系只含一个向量故D不能对角化.
n阶方阵可对角化的充分必要条件是A有n个线性无关的特征向量(1)求特征值(2)对每个k重特征值a,(A-aE)X=0的基础解系必须含有k个解向量,否则A不能对角化即必须有r(A-aE)=n-k.
A,B相似的充要条件是λE-A-与λE-B等价,或者A与B有相同的不变因子或初等因子.显然这两个矩阵有有相同的不变因子.故相似.但这些理论都有点超出大学一般理工科(非数学)的学习范围.
设P^-1*A*P=JP^-1*A^2*P=P^-1*A*P*P^-1*A*P=J^2J是A的Jordan标准型要使J^2=J,则J一定是对角阵
令A=所求矩阵,则IAI=4*(-5)+6*(-3)=-38〈0,所以A矩阵不能对角化再问:错了这个矩阵可以对角化我想知道怎么将其对角化再答:看错了,这是正定的必要条件,求特征多项式IλE-AI=(λ
1.计算A的特征值:|A-λE|=(λ1-λ)^n1......其中n1是特征值n1的重数2.对每个特征值λi计算(A-λiE)X=0的基础解系若对某个特征值λi,其重数ni小于(A-λiE)X=0的