如图 p q分别在正方形ABCD的边BC,CD上,且角1=角2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:30:50
如图,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A,B在大圆上,小圆在正方形的外部且

蛋蛋小崽崽,你好:楼上的几位都做不对,设大圆圆心为E,连接EQ,EP,显然EQ=EP-PQ=5-3=2,延长PQ交AB于G,设AB=2X,则DQ=X=AG,EG=QG-QE=2X-2,AG=X.于是在

如图,正方形ABCD的边长是4,点E在BD上,BE=BC,P是CE上任意一点,PQ⊥BC于Q,PR⊥BE于R,则PQ+P

上面那位答错了.因为PQ⊥BC,PR⊥BE,所以P在EC中点上这个是错误的我的证明:连接BPBE=BC=1角DBC=45°可算出三角形BCE的面积=根号2/41/2(BE*RP+BC*PQ)=三角形B

如图,正方形ABCD的边长为4倍的根号二,∠DAC的平分线交DC于点E,若点PQ分别是AD和AE上的动点,则PQ+DQ的

在AC上取AP'=AP,连接P'Q∠DAC的平分线由全等可知,PQ=P'Q当P',Q,D三点共线时有最小值=DPPQ+DQ=P'Q+DQ=DP再问:哦,谢谢

如图,正方形ABCD的边BC等腰直角三角形PQR的底边QR上,其余两个顶点A,D在PQ,PR上,求PA比PQ的值?

∵四边形ABCD是正方形,∴△PAD、△ABQ、△CDR是等腰直角三角形∴△PAD∽△PQR∴PA:PQ=AD:QR设正方形ABCD的边长是a,则AD=a,BQ=CR=BC=a,QR=3a因而PA:P

如图在长方形ABCD中 ab=10cm bc=20cm 当Pq两点分别在

1、(10-T)*(2T-10)/2=620t-2t^2-100+10t=12t^2-15t+56=0(t-7)(t-8)=0t=7或t=82、满足题1)的条件时,10>T>5S=(10-T)*(2T

如图,已知,在正方形ABCD中,P.Q分别是BC.CD上的点,且∠PAQ=45度.求证:PB+DQ=PQ

证明:延长CD到点E,使DE=BP连接AE则△ADE≌△ABP(SAS)∴AE=AP,∠DAE=∠BAP∵∠DAB=90°,∠PAQ=45°∴∠BAP+∠DAQ=45°∴∠EAQ=45°=∠PAQ∵A

如图在矩形abcd中mn分别是adbc的中点pq分别是bmdn的中点四边形mpnq是什么样的四边

四边形MMPNQ是平行四边形证明:因为四边形ABCD是矩形所以AD=BCAD平行BC因为M,N分别是AD,BC的中点所以AM=DM=1/2ADBN=CN=1/2BC所以DM=BN所以四边形BMDN是平

如图,在正方体ABCD_A1B1C1D1中,P,Q分别是AB,B1C1上的任意点,N是PQ的中点,M是正方形A1B的中点

连接BQ,取BQ中点G,L连接NG、MG,由于M中心,G也是BQ中点,则MG必然平行面B1D1则形成三角形PBQ∵N和G分别是PQ和BQ中点∴NG//PB,PB在面B1D1上,则NG//面B1D1又有

如图,正方形ABCD的对角线BD上去BE=BC,连接CE,P为CE上任一点,PQ⊥BC,PR⊥BE,求证:PQ+PR=&

证明:从P作PH⊥CO,垂足为H∵ABCD是正方形∴DO⊥CO,即∠ROH=90°又PH⊥CO,PR⊥OR,即∠PHO=∠ROH=∠ORP=90°∴ORPH是矩形∴PR=OH∵DO⊥CO,PH⊥CO∴

如图,在边长为2的正方形ABCD中,点Q是BC中点,点P为对角线AC上一动点,连接PB、PQ,

BQ=BC/2=1,即BQ为定值.∵点B和D关于AC对称,则PD=PB.∴PB+PQ=PD+PQ,故当点P在线段DQ上时,PD+PQ最小.DQ=√(CQ²+CD²)=√(1+4)=

如图正方形abcd的边长为一,pq分别是ab,AD上的点,且三角形apq的周长为二,求角PCq的度数.

延长AB至E,使BE=DQ连接CE∵C[△]=AP+PQ+AQ=2=AD+AB∴DQ+BP=PQ=BE+BP=PE又∵在正方形中,∠CDQ=∠CBE=DCB=90°CD=CB∴在△CDQ与△CBE中C

在正方形ABCD中,若P,Q,M,N是正方形ABCD各边上的点,PQ与MN相交,且PQ=MN,证PQ垂直MN

设P在AB上,Q在CD上,M在BC上,N在AD上,且PQ=MN.过A作AE‖PQ交CD于E,过D作DF‖MN交BC于F,∴AE=PQ,DF=MN,得AE=DF,由AD=CD,∴△ADE≌△DCF(H,

如图,在菱形ABCD中,P、Q分别是AD、AC的中点,如果PQ=3,那么菱形ABCD的周长是(  )

由题意可知,PQ是△ADC的中位线,则DC=2PQ=2×3=6,那么菱形ABCD的周长=6×4=24,故选C.

如图,正方形ABCD的边BC在等腰直角三角形PQR的斜边QR上,其余两个顶点A,D在PQ,PR上,则PA:PQ等于(

∵四边形ABCD是正方形,∴△PAD、△ABQ、△CDR是等腰直角三角形∴△PAD∽△PQR∴PA:PQ=AD:QR设正方形ABCD的边长是a,则AD=a,BQ=CR=BC=a,QR=3a因而PA:P

如图,在正方形ABCD中,P,Q分别在BC,CD上,PB+QD=PQ,利用两角和(差)的正切公式证明角PAQ=4\派

1.设BP=X,DQ=y,正方形边长为a,角PAQ正切可以用角BAP和角DAQ的正切来表示,再将后面两个角用x,y,a表示的分式(其中含有xy,x+y);2.在直角三角形CPQ中应用勾股定理找出x,y

如图,正方形ABCD中,点P是BC的中点,PQ⊥AP,交∠DCE的平分线于点Q,试说明:AP=PQ.

完全一样的题目哈,看懂就会做了呢,把图片中的字母改下就是你的答案啊要是有什么不懂的数理化题目都可以到求解答这个网站上去搜索的哦 

如图,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且

设AH为 x,AB为 2x,△PAK是直角三角形(直径上的圆周角是直角)△APH∽△AHK,∴HK/AH=AH/PH  ,即:HK=10-(3+2x)=7-2x

如图,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且

设大圆的圆心为M点,连接MA,MP,MB,连接PM并延长与AB交于点E,交小圆于Q点,由对称性可知P、Q为切点,E为AB的中点;设AB=2a(正方形的边长),在直角三角形MAE中,∵小圆在正方形的外部