如图 pa是圆o的切线 a为切点 po交圆o于c ad

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:30:29
如图已知AB为圆O的直径,PA、PB是圆O的切线,A、C为切点 ∠BAC=30°

(1)连接OC,因为OA等于OC,角BAC等于30度所以角ACO=角BAC=30度所以角AOC=180°-30°-30°=120°又因为,PA、PB是圆O的切线所以PA⊥AD,PC⊥OC,所以角PAO

如图,P为圆O外一点,直线OP交圆O于点B,C,过点P作圆O的切线PA,A为切点,已知PA/PB=3/2,求tan角PA

辅助线已作如图先证三角形ABP相似于三角形CAP:公共角P角ABP=角CAB+角ACB角CAP=角OAP+角CAO且三角形OAC等腰,从而角ACB=角CAO因为角CAB=角OAP=90°所以三角形AB

如图,PA、PB是⊙O的切线,切点分别是A、B,直线EF也是⊙O的切线,切点为Q,交PA、PB于点E、F,已知PA=12

∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=

如图,PA,PB是⊙O的切线,切点分别是A,B,直线EF也是⊙O的切线,切点为Q,EF分别交PA,PB于E,F点,已知P

依题意:EA=EQ,FB=FQ,PA=PB=10∴C△PEF=PE+PF+EF=PE+PF+EQ+FQ=PE+PF+EA+FB=PA+PB=20连结AO、QO、BO易得:△AOE≌△QOE,△BOF≌

如图'PA'PB圆O的切线,A'B为切点'AC是圆O的直径'角BAC=25度'求角P的度数

l连接OPOP垂直平分AB交AB于D△OAD∽△OAP∠P=2∠BAC=50°再问:三角形'Oad=oap求解释再答:两个三角形不是全等,是相似。两个都是Rt是三角形且有一个公共角∠AOP或者不用相似

如图,PA、PB是圆O的切线,A、B为切点,AC是圆O的直径,∠BAC=25°,求∠P的度数

50°已知BAC=25又因为OA=OB,因为是半径所以两边相等,所以∠OAB=∠OBA=25,所以∠AOB=180-∠OAB-∠OBA=130,又因为PA、PB是圆O的切线,A、B为切点,所以∠OAP

如图,PT是圆O的切线,切点为T,直线PA与圆O交于A、B两点,角TPA的平分线分别交直线TA、TB于D、E两点,已知P

PT^2=PA*PB=>PA=4√3/3后面一问我怀疑是TE/ADA=PTEAPD=TPE所以△APD相似△TPETE/AD=PT/PA=√3/2

如图,AC是圆O的直径,PA,PB是圆O的切线,切点分别为A,B.OP与CB有怎样的位置关系

OP∥BC.证明:连接OB,AB.∵PA,PB均为圆O的切线.∴∠PAO=∠PBO=90°.(切线的性质)又∵OA=OB,OP=OP.∴⊿PAO≌⊿PBO(HL),∠2=∠3.∵OA=OB,∠2=∠3

如图,已知PA、PB是圆O的两条切线,A、B为切点,

证明:△AOP≌△BOP∴PA=PB△AOP≌△CAP∴PA/PC=PO/PA∴PA^2=PC*PO∴PA^2=PB^2=PC*PO

如图,PA、PB为圆O的切线,A、B为切点,点P为切点A、B的延长线的交点,角P=60度,AB=6根号3,求圆O的半径

∠AOB=180°-∠P=120°三角形AOB中,根据余弦定理得:(6√3)^2=r^2+r^2-2r^2cos120°3r^2=36*3r^2=36r=6

如图,PA为圆O切线,A为切点,OP平分角APC 求证:PC是圆O切线

连接OC∵OB=OC∴∠OBC=∠OCB∵PO∥BC∴∠AOP=∠OBC,∠COP=∠OCB∴∠AOP=∠COP∵PO=PO,OC=OA∴△OAP≌△OCP∴∠OAP=∠OCP∵PA是切线,AB是直径

如图,PA为圆O切线,A为切点,OP平分角APC

额,图,再问:再问:求证PC是圆O切线再答:再问:((((;゚Д゚)))))))......谢谢.......

如图,PA为圆O的切线,A为切点,OP平分角APC, 求证:PC是圆O的切线

连接oaoc,两个三角形相似,角pco等于九十度

如图,PA.PB是圆o的切线,点A.B为切点

S=Spab+圆-弓形AB=(2倍根号3)^2*4分之根号3+TT*2*2-120/360*TT*2*2+2倍根号3*根号3/2

如图,以圆O外一点P引圆O的切线PA,PB,切点分别为A,B,Q为劣弧AB上一点,过Q做圆O的切线交PA,PB于E,F,

∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=

如图 PA、PB是圆O的两条切线 切点分别为点A 、B,求证PA=PB

证明:连接PO∵PA、PB是圆O的两条切线∴OA⊥PA,OB⊥PB又∵OA=OB=半径,OP=OP∴Rt⊿PAO≌Rt⊿PBO(HL)∴PA=PB

如图,AC是⊙O的直径,PA,PB是⊙O的切线,A,B为切点,AB=6,PA=5.

(1)连接PO,OB,设PO交AB于D.∵PA,PB是⊙O的切线,∴∠PAO=∠PBO=90°,PA=PB,∠APO=∠BPO.∴AD=BD=3,PO⊥AB.∴PD=52−32=4.在Rt△PAD和R

如图,已知点P是圆O外一点,PA是圆O的切线,切点为A连接PO并延长交圆O于点C,B

设半径为r,角P=45°,sqrt(n)指对n开根号,/指除号,乘号省略=>PA=OA=r,=>OP=sqrt(2)r,OB=OC=r,1)PBPB=OP-OB=[sqrt(2)-1]r,PA=[sq

如图,AP是圆心O的切线,A为切点,点B在圆心O上,且PA=PB,求证PB是圆心O的切线.

证明:连接OA,OB,OP.      点B在圆心O上,且PA=PB;      

如图,A是半径为2的圆O上的一点,P是OA的延长线上的一点,过点P做圆O的切线,切点为B,设PA=m,PB=n

(1)连接OB,则△PAB是直角三角形,所以PO的平方=PB的平方+OB的平方所以(m+2)^2=2^2+4^2,解得,m=2+2根5.(2)存在这样的点C,使△PBC为等边三角形,点c也是切点,且角