如图 角aob内有一点p,P关于OA,OB的对称点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:39:10
P1是P关于OA的对称点,所以OA是PP1的中垂线,OP=OP1,三角形P1OP是等腰三角形,∠P1OA=∠AOP(等腰三角形三线合一)同理,∠P2OB=∠BOP∠AOB=∠AOP+∠BOP∠P1OP
(1)由对称点可得到P1M=PM,P2N=PN,所以△PMN的周长=PM+MN+PN=P1M+MN+P2N=12cm.(2)由四边形的内角和等于360°,可得出∠P1pP2=180°-∠AOB=180
∵P与P1关于OA对称,∴OA为线段PP1的垂直平分线,∴MP=MP1,同理,P与P2关于OA对称,∴OB为线段PP2的垂直平分线,∴NP=NP2,∴P1P2=P1M+MN+NP2=MP+MN+NP=
1)因为P与P1对称所以∠1=∠2因为P1与P2对称所以∠3=∠4∠AOB=∠2+∠3∠POP2=∠1+∠2+∠3+∠4=2(∠2+∠3)=2∠AOB2)在边上,则没有P1,即没有∠1与∠2.直接P2
作PP1⊥OA,垂足C,且PC=P1C;根据角平分线定理,OA为∠POP1的角平分线,∠POA=∠P1OA;作P1P2⊥OB,垂足D,且P1D=P2D;根据角平分线定理,OB为∠P1OP2的角平分线,
没看到图,若是这样的图则(1)∠P1OP2=2∠AOB(2)大胆的结论是∠P1OP2=2∠AOB.
连接OP∵P1、P2分别是OA、OB的对称点∴P1P⊥OA,P2P⊥OB又∠AOP+∠BOP=∠AOB=25°(已知)∠AOP+∠OPP1=90°∠BOP+∠OPP2=90°∴∠OPP1+∠OPP2=
∵点E是点P关于直线OA的轴对称点∴OA垂直平分PE∴CE=CP∵点F是点P关于直线OB的轴对称点∴OB垂直平分PF∴DP=DF∴L△PCD=CP+CD+DP=CE+CD+DF=EF∵EF=10∴L△
作PP1⊥OA,垂足C,且PC=P1C;根据角平分线定理,OA为∠POP1的角平分线,∠POA=∠P1OA;作P1P2⊥OB,垂足D,且P1D=P2D;根据角平分线定理,OB为∠P1OP2的角平分线,
∠P1OP2=2∠AOBP1是P关于OA的对称点,所以OA是PP1的中垂线,OP=OP1,三角形P1OP是等腰三角形,∠P1OA=∠AOP(等腰三角形三线合一)同理,∠P2OB=∠BOP∠AOB=∠A
点P1和P关于OA对称,则OP1=OP=2;同理:OP2=OP=2.∠P1OA=∠POA;∠P2OB=∠POB.故∠P1OA+∠P2OB=∠POA+∠POB=45度,∠P1OP2=90度.所以,S△O
连接PM,PN,由对称性可知PM=P1M,PN=P2N所以△PMN的周长等于P1P2的长,即△PMN的周长=PM+MN+PN=P1M+MN+P2N=P1P2=5cm
因为是对称点,所以MP=MP1,NP=NP2,所以P1P2=MP1MNNP2=MPMNNP=6cm3∠MPN=100°
如图,角AOB内有一点P:(1)过点P画PC//OB交OA于点C,画PD//OA交OB于点D;(2)写出图中
因为P1和P2是点P 分别关于OA和OB的对称点973所以OA垂直平分PP1173所以P1M=PM OB垂直平分PP2,所以PN=P2N,因为P1P2=P1M+MN+P2N=5,所以P1P2=PM+
∠AOB=25°→∠P1OP2=50°,又∵O,P1,P,P2四点共圆,∴∠P1PP2=130°
∵点P1与P关于OA对称.∴∠OQP=90°;同理:∠ORP=90°.∵∠OQP+∠ORP+∠QOR+∠P1PP2=360°.(四边形内角和为360度)即90°+90°+25°+∠P1PP2=360°
在oa上,随便找一点d,连接pd,做pe垂直oa,用直尺量出pe的长度,再用直尺向oa的另一方【垂直】作出Ep,点F即是点P关于直线OA的对衬点.接下去:【同样方法】(1)答:角POP'大于角a.(没
1、角POP2为角AOB的二倍因为∠AOB=∠AOP1+∠BOP1∠POP2=∠POP1+∠P1OP2=2∠AOP1+2∠BOP1故得结论2、仍然成立就这两种情况作出图形,按照上述方法即可证明关键在于