如图,从P点引圆O的两切线PA,PB,A,B为切点,已知圆O的半径
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:55:32
因为PA、PB、DE为圆O的切线所以PA=PB、DC=DA、EC=EB△PDE的周长=PD+PE+DE=PD+DC+PE+EC=PD+DA+PE+EB=PA+PB=2PA所以PA=20/2=10再问:
辅助线已作如图先证三角形ABP相似于三角形CAP:公共角P角ABP=角CAB+角ACB角CAP=角OAP+角CAO且三角形OAC等腰,从而角ACB=角CAO因为角CAB=角OAP=90°所以三角形AB
依题意:EA=EQ,FB=FQ,PA=PB=10∴C△PEF=PE+PF+EF=PE+PF+EQ+FQ=PE+PF+EA+FB=PA+PB=20连结AO、QO、BO易得:△AOE≌△QOE,△BOF≌
l连接OPOP垂直平分AB交AB于D△OAD∽△OAP∠P=2∠BAC=50°再问:三角形'Oad=oap求解释再答:两个三角形不是全等,是相似。两个都是Rt是三角形且有一个公共角∠AOP或者不用相似
用同一法较为容易,PC交AB于R,作DF//PA交AB于F,交AC于G,下面证明CF交AP于中点M,即E,F同一点,DE//PA首先由一个结论DR/RC=PD/PCPD/PC=(PD/PA)*(PA/
∵PA、PB是⊙O的两条切线,∴∠APO=∠BPO,PA=PB,∴OP垂直平分AB;故①正确;∵PB⊥OB,∴∠OBP=90°,∴∠BOP+∠BPO=90°,∴∠BOP+12APB=90°,得不到∠A
延长AO交园边于点K,连接KC并延长交AP于E\x09\x09\x09\x09∵∠B=∠K(两角都是弦AC的圆周角相等)\x09\x09\x09\x09∵∠PDA=∠PAD ( P
∵PA、PB是⊙O的两条切线,切点为A、B,∴OA⊥PA于A,OB⊥PB于B,又∵OA=OB,OP=OP,∴Rt△OAP≌Rt△OBP,∴∠AOP=∠BOP=12∠AOB,∴∠AOP=60°.在Rt△
∵PA,PB是圆O的两条切线,A,B是切点,∴∠PAO=90°,∠PBO=90°∵AC是圆O的直径,∠BAC=35°∴∠BOC=2∠BAC=70°∵∠P=360°-∠PAO-∠PBO-∠AOB=∠BO
∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8
证明:△AOP≌△BOP∴PA=PB△AOP≌△CAP∴PA/PC=PO/PA∴PA^2=PC*PO∴PA^2=PB^2=PC*PO
连接OP,尺规法找到OP中点M,以M为圆心,OP为直径作圆与圆O交于点A,点B连接PA,PBPA,PB即为所求切线
因为PA,PB为切线所以PA=PB因为BD⊥PA于点D,AE⊥PB于点E三角形ABP的面积可以表示为二分之一BD*AP或者二分之一AE*BP所以AE=BD因为BD⊥PA,AE⊥PBAB=AB所以三角形
PA^2=PB*PC,PA/PB=PC/PA,<APB=<CPA,△APB∽△CAP,<PAB=<ACP,∴PA是圆O的切线.(圆外切割线逆定理). 若要继续证明,则
连接AO和BO,PO=PO,∠PAO=∠PBO=90°,AO=BO,证明△OAP与△OBP全等.r=2根号3,最大值为6+2根号3再问:这是什么啊???能竖着写吗。我多给你分。谢谢了。
∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=
连接OA,OB,OP,然后用四边形OAPB的面积减去扇形OAB的面积.
连接OA,OB,OP将四边形OAPB分成两个含30度角的直角三角形,求出两个直角三角形的面积,然后减去扇形OAB的面积即可
证明:连接PO∵PA、PB是圆O的两条切线∴OA⊥PA,OB⊥PB又∵OA=OB=半径,OP=OP∴Rt⊿PAO≌Rt⊿PBO(HL)∴PA=PB
你没有阴影图.所以估计解答如下,希望对你有帮助连接OA,OB,OP,则∠APO=∠BPO=∠APB/2=30°且AB⊥OPOA⊥APOB⊥BP圆的半径为1,则OA=OB=1四边形OAPB面积S=OP*