如图,双曲线x^2-y^2 4=1的左右两个焦点为F1,F2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 17:23:07
如图已知直线Y=1/2x与双曲线y=k/x(K>0)交于a,b两点,且点A的横坐标为4 (1)求K的值 (2)若双曲线Y

把x=4代人直线得:y=2;A(4,2)把A代人双曲线2=k/4,k=8,B(-4,-2)2、把C的纵坐标代人y=8/x,x=1,C(1,8)所以三角形AOC的面积s=(1/2)(8+2)3=15.3

如图,A、B在双曲线y=4/x(x>0)上,C、D在双曲线y=1/x(x>0)上,AC//BD//y轴,且AC=2BD,

∵A、B都在双曲线y=4/x上,∴可设A、B的坐标分别为(m,4/m)、(n,4/n).∵AC∥BD∥y轴,又C、D都在双曲线y=1/x上,∴可设C、D的坐标分别为(m,1/m)、(n,1/n).∴A

如图,已知双曲线x^2/a^2-y^2/b^2=1(a>b>0),其右准线交x轴于点A,双曲线虚轴的下端点为B,过双曲线

其实不难:(1)B(0,-b)A(a2/c,0);P(c,b2/a);D(c,c/2+b2/2a),A、B、D共线,得a=2b,可算得e根号下5/2(2)C(0,4)

如图,直线y=4x/3与双曲线y=k/x(x>0)交于点A,将直线y=4x/3向右平移9/2个单位后,与双曲线y=k/x

作AD垂直x轴于D,BE垂直于x轴于E由题意有三角形OAD相似于三角形CBE设CE=a,BE=b故OD=2a,AD=2b故A(2a,2b)、B(9/2+a,b)故有2b=k/(2a),b=k/(9/2

双曲线的交点|如图,点P是直线y=1/2x+2与双曲线y=k/x在第一象限内的一个交点,直线y=1/2x+2与X轴、Y轴

(1)从图中可以看出,点B的坐标是(6,0),因为点P在直线y=1/2x+2上,且P的横坐标为6,所以纵坐标为5,即P(6,5),又点P在双曲线y=k/x上,所以k=5*6=30(2)由(1)知双曲线

如图,直线y=-x+6与双曲线y=-1/x(x

设A(X1,Y1),-1/X1=-X1+6,即x1^2-6x1-1=0,B(6,0)OA^2-OB^2=X1^2+Y1^2-36=X1^2+(-X1+6)^2-36=2X1^2-12X1=2(x1-6

(2013•滨湖区二模)如图,已知点A是双曲线y=3x

设点B所在反比例函数的解析式为y=kx(k≠0),分别过点AB作AD⊥x轴于点D,BE⊥x轴于点E,∵∠AOE+∠DOB=90°,∠AOE+∠OAD=90°,∴∠OAD=∠BOE,同理可得∠AOD=∠

如图,直线x=t(t>0)与双曲线y=k1/x(k1>0)交于点a与双曲线y=k2/x(k2

1、设AB与X轴相交于C点,则OC=t,A、B两点坐标分别为A﹙t,k1/t﹚,B﹙t,k2/t﹚;∴S=△OAB面积=½×AB×OC=½×﹙k1/t-k2/t﹚×t=½

(2013•南通二模)如图,点A是双曲线y=4x

连结OC,作CD⊥x轴于D,AE⊥x轴于E,如图,设A点坐标为(a,4a),∵A点、B点是正比例函数图象与双曲线y=4x的交点,∴点A与点B关于原点对称,∴OA=OB∵△ABC为等腰直角三角形,∴OC

如图,若直线y=x被双曲线y==k²/x与双曲线y=2k²/x在第一象限所截得的线段长为2-根号2

(1)分别把y=x代入双曲线解析式,解得A(k,k),B(√2k,√2k)∴OA=√2K,OB=2K,AB=(2-√2)K=2-√2,∴k=1(2)设在X轴上存在点P(m,0),作AC⊥X轴于C,BD

(2012•武侯区一模)如图,直线y=2x与双曲线y=kx(x>0)交于点A,将直线y=2x向右平移3个单位,与双曲线y

(1)∵将直线y=2x向右平移3个单位后,得到的直线是BC,∴直线BC的解析式是:y=2(x-3);(2)过点A作AD⊥x轴于点D,BE⊥x轴于点E,∵直线BC是由直线OA平移得到的,∴ADBE=AO

已知:如图,双曲线y=x分之k的图像经过A(1,2),B(2,B)两点.

1·先把A点往解析式里代得到2=k/1所以k=2所以解析式为y=2/x2·把B点往一中求得的解析式里代入得B=1所以b小于2希望对你有帮助

如图,M为双曲线y=根号3/x上的一点

2倍根号3.再问:==过程再问:答案我知道的再答:设M坐标为(x0,y0),根据双曲线函数,y=√3/x,A(0,m),B(m,0),y0=√3/x,∴M(x0,√3/x0)D(x1,y1),y1=-

如图,直线y=2x沿x轴正方向平移2个单位后与x轴交于 A点,与双曲线y=6/x和双曲线y=k/ x分别于BC两点,

直线平移之后的方程是y=2(x-2),三角形OBC的面积=2三角形OAB的面积,表明BC=2AB,(两个三角形等高,面积的比等于底边长的比)从B、C作X轴的垂线,更具相似形的关系,2AB`=B`C`根

如图,直线y=2x-8与坐标轴交于A,B两点,与双曲线y=24/x交于M点,直线CD与AB平行,交双曲线与N点

设CD:y=2x-m(m>8)可解得A(4,0)B(0,8)M(6,4)BD=m-8{对于N,有y=2x-m且y=24/x且NA^2=BD^2}用大括号里的条件可解得x=8m=13y=3(x=4、x=

已知如图直线y=1/2x+2与双曲线y=k/x(x>0)在第一象限内交于点P

第一问:显然可以求得A(-4,0),因为P在直线上,所以设P为(xp,1/2*xp+2),那么B(xp,0),由AB+PB=15,所以xp+4+1/2*xp+2=15,xp=6,因而P(6,5),P在

如图,直线y=-x+b与双曲线y=-3/x(x

得6.再问:要再答:设A(x,y)B(b,0)y=-x+by=-3/xx^2-bx-3=0Δ=根号(b^2+12)x=(b-根号Δ)/2y=(b+根号Δ)/2x^2+y^2=b^2+6OA^2-OB^

如图,直线y=-x+2交双曲线y=k/x(x大于0)于A.B两点,交双曲线关于x轴对称的图像于点C,且AB=BC,则k=

由y=-x+2=k/x并整理得(x-1)²=1-k,所以A点的横坐标Xa=1-√(1-k),B点的横坐标Xb=1+√(1-k),双曲线关于x轴对称的图像为y=-k/x(x>0)由y=-x+2

如图,双曲线C的渐近线是2x±3y=0,且两顶点间的距离为6,求该双曲线的方程.

当焦点在x轴上时,∵双曲线C1的渐近线是2x±3y=0,∴ba=23,∵两顶点间的距离为6,∴a=3,b=2,∴双曲线的方程是x29-y24=1.当焦点在y轴上时,∵双曲线C1的渐近线是2x±3y=0