如图,在三棱锥P-ABC中,PB垂直平面ABC,PB=BC=CA=4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:52:52
第一个问题:取AC的中点为D.∵AB=BC=2√2、AC=4,∴AB^2+BC^2=AC^2,∴由勾股定理的逆定理,有:AB⊥BC.由AB⊥BC、AD=CD,得:BD=AC/2=2.∵PA=PC=AC
条件中,应为PA=AB(1)由于PA⊥平面ABC,所以PA⊥BC,又由条件,AC⊥BC,所以BC⊥平面PAC(2)DE//BC,BC⊥平面PAC,所以DE⊥平面PAC所以∠DAE就是AD与平面PAC所
证明:(Ⅰ)∵E,F分别是AC,BC的中点,∴EF∥PB.又EF⊄平面PAB,AB⊂平面PAB,∴EF∥平面PAB.(Ⅱ)∵侧棱PA⊥底面ABC,∴PA⊥BC,又由AB⊥BC,PA∩AB=A,∴BC⊥
由二面角的平面角定义又PA|ABC得PA|AB,PA|AC.则角BAC为B-PA-C的平面角,又PAB|PAC,故BAC直角.
外是各边垂直平分线交点再问:PA与底面ABC所成角为__再答:60°因为是外心,且角BAC=π/2,所以P的投影P'在BC中点PA=PB,P'A=P'B=(1/2)BC所以△PAP'全等于△PBP'所
由二面角的平面角定义又PA|ABC得PA|AB,PA|AC.则角BAC为B-PA-C的平面角,又PAB|PAC,故BAC直角.再问:平面PAC⊥平面PAB怎么来的?再答:设A平面PBC内射影为M,即A
(1)AC=BC,AP=BP,PC=PC,所以三角形PCA与PCB全等,又因为PC⊥AC,所以PC⊥BC,PC⊥面ABC,得PC⊥AB.(2)取PA中点D,连结BDCD,所以BD⊥PA,而BC⊥面PA
(1)证明:因为△PAB是等边三角形,∠PAC=∠PBC=90°,PC=PC所以Rt△PBC≌Rt△PAC,可得AC=BC.如图,取AB中点D,连接PD、CD,则PD⊥AB,CD⊥AB,所以AB⊥平面
(1)∵PO⊥面ABC,角APB=90度,角PAB=60度∴PO=根号(3)/4*AB∵AB=BC=CA∴CO=根号[(1/4)^2+(根号(3)/2)^2]*AB=根号(13)/4*AB∴直线PC与
(1)证明:∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,且BC⊥AB,∴BC⊥平面PAB,∵PA⊂平面PAB,∴PA⊥BC;又∵PA⊥PB,PB∩BC=B∴PA⊥平面PBC.…..4(2)
双曲线x/a-y/b=1的斜率大于0的渐近线的方程为:y=(b/a)x(1)则过右焦点(c,0)与渐近线y=(b/a)x垂直的直线方程为:y=-(a/b)(x-
点击放大图片方法一向量方法二几何法
(I)由题意画出图如下:由AB=AC,D为BC的中点,得AD⊥BC,又PO⊥平面ABC,垂足O落在线段AD上,得到PO⊥BC,∵PO∩AD=O∴BC⊥平面PAD,故BC⊥PA.(II)如图,在平面PA
由AB=BC,ABC为RT三角形,所以AB⊥BC,又PA⊥面ABC所以pB⊥BC(三垂线定理),pA=4=2AB,所以AB=2,Ac=2√2,pB=2√5,pC=2√6,Vp-BCD=VD-PBC,即
空间直角坐标系法.以P为原点,分别以PA、PC、PB为X、Y、Z轴建立坐标系.最后解得:3/2.
证:1、∵在△ABP中点E、F分别是AP、AB的中点∴EF//PB同理可得:GH//PB∴EF//PB∵PB在面PBC上∴EF//面PBC2、由1得EF//PB//GH∵在△APC中点E、H分别是AP
解题思路:利用均值不等式计算。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/re
(1)证明:取AC中点O,因为AP=BP,所以OP⊥OC 由已知,可得△ABC为直角三角形,∴OA=OB=OC,△POA≌△POB≌△POC,∴OP⊥OB∵OB∩OC=O∴OP⊥
取PC的中点O,连结OA、OB∵∠PAC=90°,∴OA=OP=OC∵∠CBP=90°,∴OB=OP=OC∴OA=OP=OB=OC∴P、A、B、C在同一个球面上
点F在PA上,且2PF=FA,∴向量BF=(2/3)BP+(1/3)BA=(2/3)(0,0,2)+(1/3)(2,2,0)=(2/3,2/3,4/3).设平面BEF的法向量为n1=(x,y,1),由