如图,在圆o中,AB,CD是两条妶,OE垂直AB,of

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:33:05
已知,如图,在圆O中,弦AD=BC,连接AB,CD,求证AB=CD

∵弦AD=弦BC∴∠AOD=∠BOC∴∠AOD+∠AOC=∠BOC+∠AOC即∠COD=∠AOB∴弦AB=弦CD(定理:在同圆或等圆中,若两个圆心角、两条弧、两条弦中有一组量相等,则对应的其余各组量也

如图,在圆O中,AB=CD.求证:BC=AD.

解题思路:本题主要考察了圆中,弧与弦的关系计算问题,等弦所对的弧相等,等弧所对的弦也相等。解题过程:证明:∵AB=CD∴弧AB=弧CD∴弧AB-弧BD=弧CD-弧BD∴弧AD=弧BC∴AD=BC

如图,在圆O中,两弦AB与CD的中点分别是P,Q,且弧AB=弧CD,连接PQ.求证:∠APO=∠CQP

连接OP,OQ因为P、Q分别为AB、CD的中点所以OP⊥AB;OQ⊥CD;又OP=OQ,∴∠OPQ=∠OQP∴∠APQ=90°—∠OPQ∠AQP=90°—∠OQP即证:∠APQ=∠AQP

已知,如图,在圆O中,弦AB=CD,求证AD=BC

因为弦AB=CD,所以弧AB=CD,所以弧AD=BC,所以弦AD=BC

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.

(1)∠CPD=∠COB.…(1分)理由:如图所示,连接OD.…(2分)∵AB是直径,AB⊥CD,∴BC=BD,…(3分)∴∠COB=∠DOB=12∠COD.…(4分)又∵∠CPD=12∠COD,∴∠

已知:如图,在圆O中,OE,OF分别是弦AB,CD的弦心距,且OE=OF.求证AB=CD

做辅助线:连接OA\,OB,OC,OD,则有:OA=OB=OC=OD在三角形OAE和OCF中,OA=OC,OE=OF,角OEA=角OFC=90度,所以三角形OAE与OCF全等,所以AE=CF,同理可证

如图,在圆O中,弦CD与直径AB垂直于H点,E是AB延长线上一点,CE交圆O于F点

(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD

因为同弧对应的圆周角,等于圆心角的一半,而∠COD是劣弧CD所对的圆心角,∠CPD是同一劣弧CD所对的圆周角,因此∠CPD=1/2∠COD;又CD垂直于AB,故∠COB=1/2∠COD,因此∠CPD=

如图,在圆O中,AB,CD为两条弦,且AB‖CD,直径MN经过AB的中点E,交CD于F.1.求

因为MN过圆心,且经过AB中点,所以MN垂直于AB,所以MN垂直于CD,所以MN与CD交于CD的中点,因此F为CD中点.因为MN垂直于AB和CD,所以M,N为狐AB,CD的中点,即狐AM=BM,CN=

已知如图在圆O中AD=BC,求证AB=CD

证明:连接BD∵AD=BC∴∠ABD=∠CDB【等弦所对的圆周角相等】∵∠A=∠C【同弧所对的圆周角相等】∴⊿ADB≌⊿CBD(AAS)∴AB=CD

已知如图,在圆o中,弦AB‖CD,求证:AD=BC

因AB//CD推出角AOC=角BOD推出弧AC=弧BD(相等的圆心角对应的弧长相等)连接ACBD则AC=BD在证明三角形ACD全等于三角形BDC就行了刚才的写错了

已知:如图,在圆O中,OE,OF分别是弦AB,CD的弦心距,且OE=OF.求证:AB=CD

首先,OA=OB=OC=OD,所以OAB,OCD是等腰三角形.OE,OF分别是他们的高所以也是他们的中线和角平分线所以AE=EBCF=DF因为直角三角形只要斜边相等,一条直角边相等就能推出全等所以AO

如图,在圆O中,AB=AC,AD是圆O的直径.试判断BD与CD

∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD

如图,在圆o中,ab=cd,ab与cd交于p,ap与dp关系

过O作OE⊥AB于E,OF⊥CD于F,则E,F为AB,CD中点,连OP.AB=CD,所以OE=OF.再由勾股定理(OP=OP,OE=OF)得PE=PF.AP=AE+PE=DF+PF=PD.

如图在圆O中,AB,CD是两弦,且AB>CD,OE⊥AB于点E,OF⊥CD于点F.求证OE

证明:∵OE⊥AB∴AE=AB/2∴OE²=OA²-AE²∵OF⊥CD∴CF=CD/2∴OF²=OC²-CF²∴OE²-OF

如图 在圆o中 cd是直径 ab是弦ab⊥cd于M,OM=3,DM=2,求弦AB的长

OM平方+AM平方=OA平方AM平方=5*5-3*3=16AM=4AB=AM*2=4*2=8弦AB的长等于8.

如图,在圆O中,AB,CD是两弦,且AB>CD,OE垂直于AB于点E,OF垂直于CD于点F,求证O

做辅助线,连接OA=OB=OC=OD,因为AB大于CD,所以角OAB和角OBA小于角OCD和角ODC,所以OE小于OF.

如图,在圆O中,AB CD 是俩条弦 OE垂直AB OF垂直CD 垂足为EF 1

①OE=OF,因为OA=OB=OD=OC且∠AOB=∠COD所以△AOB与△DOC全等垂线也相等②AB=CD弧AB=弧CD∠AOB=∠COD,因为圆中任意与圆点距离相等的弦的长度都相等,弦相等弧一定相