如图,在圆点O中,AB是直径,点C在圆上,∠A=30°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 23:36:17
如图,在圆O中,AB是直径,CD是弦,CE垂直CD与点c,交AB与点E,DF垂直CD,交AB与点F.求证AE=BF

证:设M为CD中点连接OM,则OM垂直于CD(垂弦定理)又因为CE垂直于CD,DF垂直于CD所以CE平行于OM平行于DF(在同一平面内,垂直于同一直线的两条直线相互平行)又因为M为CD中点(已设)所以

如图在圆o中 AB是直径.P为AB上一点,角NPB=45.

1因直径AB=AP+BP=2+6=8,所以半径OA=8/2=4,OP=OA-AP=4-2=2.又角MPB=45度,故作OH垂直MN,垂足为H,三角形OHP是等腰直角三角形.OH=HP,而OH^2+PH

如图,在圆O中,直径AB=4,点E是OA中任一点,过E作弦CD垂直AB,点F是弧BC一点,链接AF交CE与点H,

(1)∵OA过圆心且CD⊥AB∴弧AC=弧AD∴∠F=∠ACD又∵∠CAF=∠CAF∴△ACH∽△AFC(2)连接BC∵AD为直径∴∠ACB=90°又∵CE⊥AB∴AE×AB=AC²∵△AC

如图,在△ABC中,∠BCA=90°,以BC为直径的圆O交AB于点P,Q是AC的中点

求啥啊再问:判断直线PQ与圆O的位置关系。,给了,做不出就别说话哦再答:1,连接cpbc直径所以△BCP是直角三角形△ACP也是直角三角形又因为PQ是△ACP的中线所以PQ=CQ∠QCP=∠QPC又因

如图,在三角形ABC中,AB=AC,以AC为直径作圆O交BC于点D,作DE垂直AB于点E,求证:DE是圆O的切线

证明圆的切线的方法:⑴、圆心到直线的距离等于半径;⑵、过半径外端且垂直于半径.此题可用第二种方法解决,即:证明DE⊥OD.证法如下:连结OD,所以AD⊥BC,由于AB=AC,利用等腰三角形的“三线合一

已知,如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,作DE⊥AC于点E,求证:DE是圆O的切线.

连接AD,因AB是直径,所以:AD垂直BC而:DE垂直AC,所以:角DAC+角ADE=角DAC+角C=90度所以:角ADE=角C而:AB=AC,三角形ABC是等腰三角形,角B=角C所以:角ADE=角B

如图,在圆O中,AB是直径,P是AB上一点,且∠NPB=45°.(1)如图1,若点P与圆心O重合时

1∵P与圆心O重合所以MP=PN=AP=PB所以(MP²+NP²)/AB²=(MP²+MP²)/(2MP)²=二分之一2作OC垂直MN于C所

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.

(1)∠CPD=∠COB.…(1分)理由:如图所示,连接OD.…(2分)∵AB是直径,AB⊥CD,∴BC=BD,…(3分)∴∠COB=∠DOB=12∠COD.…(4分)又∵∠CPD=12∠COD,∴∠

如图,AB是圆O的直径,点P是弧AB的中点

先自己画个图,标准点,再看题目

如图,在圆O中,弦CD与直径AB垂直于H点,E是AB延长线上一点,CE交圆O于F点

(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD

因为同弧对应的圆周角,等于圆心角的一半,而∠COD是劣弧CD所对的圆心角,∠CPD是同一劣弧CD所对的圆周角,因此∠CPD=1/2∠COD;又CD垂直于AB,故∠COB=1/2∠COD,因此∠CPD=

如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,过点D作DE⊥AC于E,求证:DE是圆O的切线

我可能证明的不对,但是还是说一下吧.麻烦在草纸上重新画图证明:连接DO、AD得DO为圆O的半径∴∠ABD=∠ODB又∵AB=AC∴∠ABD=∠ACB∵DE⊥AC∴∠ACB+∠EDC=90°∴∠BDO+

如图 ab是圆o的直径,点C在园O上运动与AB两点不重合,弦CD垂直AB,CP平分∠OCD交点P.在点c的运动过程中,点

额.其实你都看到答案了,只要在进一步一点点就好了连结OP因为OC=OP所以角OCP=角OPC因为∠OCD的平分线交⊙O于P所以角DCP=角OCP所以角DCP=角OPC所以无论何时,CD平行OP又因为o

如图,已知,在圆O中,直径AB=4,点E是OA上任意一点,过E作弦CD垂直AB

(1)∵OA过圆心且CD⊥AB∴弧AC=弧AD∴∠F=∠ACD又∵∠CAF=∠CAF∴△ACH∽△AFC(2)连接BC∵AD为直径∴∠ACB=90°又∵CE⊥AB∴AE×AB=AC²∵△AC

如图在圆o中,ab为直径,bc与圆o相切于点B,连接co,AD平行于oc且交圆o于点D,求证:cD是圆o的切线

连接BD交OC于E,由于AD//OC,所以BE/DE=Bo/AO=1,所以E是BD中点,因为三角形BDO是等腰三角形,所以OC垂直于BD,即使OC是BD的垂直中心线,所以CB=BD,所以三角形BCO全

如图,在圆O中,AB是圆O的直径,OC⊥AB,D是CO的中点

连接EO,DO=CO/2=EO/2,则角DOE=60度,角AOE=30度,因此CE弧=2EA弧

如图,在圆O中,AB=AC,AD是圆O的直径.试判断BD与CD

∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD

如图,在圆O中,线段AB为其直径,为什么直径AB是圆O中最长的弦

①直径是圆中最长的弦.过点A作任一弦(不与AB重合)交圆O于点K,我们证明AK小于AB即可.连接BK,则△ABK是直角三角形,∠AKB=90°,AB是斜边,所以AB大于AK.因为对于任何不与AB重合的