如图,点ABCD在一条直线上,AE垂直AD,FD垂直DA,垂足分别为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 06:24:27
1、图中,有△ABP≌△PGF(AB=PG=2,BP=FG=3,∠ABP=∠PGF=90°)∴将△PGF向左平移5个单位,G和B重合,再将△PGF绕G(B)顺时针旋转90°,那么△ABP和△PGF重合
∵PC∥AB,QC∥AB,∵PC和CQ都过点C,∴P、C、Q在一条直线上(过直线外一点有且只有一条直线和已知直线平行),故答案为:过直线外一点有且只有一条直线平和已知直线平行.
抱歉!原题不完整,无法直接解答.请审核原题,追问时补充完整,
延长CD交EF于M,连接FD∵四边形ABCD是平行四边形∴CD∥AB,AD∥BC,CD=AB,AD=BC又∵E在AD的延长线上,CE∥BD∴四边形CEDB是平行四边形∴ED=CB∴ED=DA=1/2E
只说解题步骤,详细的内容你可以自己做:按上图作辅助线.∠2=∠3-∠1∴tan∠2=tan(∠3-∠1)=(tan∠3-tan∠1)/(1-tan∠3×tan∠1)=.=1所以,∠2=45° 
(1)AP⊥PF对△ABP和△PGF来说,AB=PG=2,BP=5-2=3=GF=3∠B=∠G=90°∴Rt△ABP≌Rt△PGF∴∠BAP=∠GPFAP=PF∵∠BAP+∠BPA=90°∴∠GPF+
(1)猜想PA=PF;理由:∵正方形ABCD、正方形ECGF,∴AB=BC=2,CG=FG=3,∠B=∠G=90°,∵PG=2,∴BP=2+3-2=3=FG,AB=PG,∴△ABP≌△PGF,∴PA=
如果C、D不重合,那么平行.证明:∵EA⊥AD,FB⊥AD,∴EA‖FB∴∠E=∠BGC(俩直线平行,同位角相等)①又∵∠E=∠F②①+②∴∠F=∠BGC∴CE‖DF(同位角相等,俩直线平行)证讫.
(1)有4对全等三角形.分别为△AMO≌△CNO,△OCF≌△OAE,△AME≌△CNF,△ABC≌△CDA;(2)证明:∵OA=OC,∠1=∠2,OE=OF,∴△OCF≌△OAE.∴∠EAO=∠FC
因为两个三角形全等,所以角A等于角B,所以AC平行EF;又因为AB等于DF,即AD+BD等于FB+BD,所以AD等于BF
因为三角形BAC和DCE是等边且相似所以DCB=60所以DCA=BCE=120CE/BC=CD/CA(相似可得)所以三角形DAC和BCE相似(边角边)所以CBE=DAE又BGP=AGC所以ACB=AP
△ABF与△CDE全等,理由如下:∵AB∥CD(已知)∴∠A=∠C(两直线平行,内错角相等)又∵AE=CF(已知)∴AF=CE(等量加等量和相等)在△ABF和△CDE中AB=CD(已知)∠A=∠C(已
如图示,正方形CEKH的面积等于正方形ABCD与BEFG的面积和:
连接AC,AB=AD,BC=CD,AC=CA所以,三角形ABC和三角形ADC全等(SSS)∠B=∠D,四边形ABCD中∠A+∠B+∠C+∠D=360°∠BAD=45°,∠BCD=135°,即∠B+∠D
首先,讨论不与MN相交下的情况作直线PQ,过E作ET垂直于BA过E作EH垂直于CN,过E作EK垂直于MN,由于EM平分∠BMN,EN平分角MNC,所以TE=KE=HE当PQ与AB的夹角APQ为锐角时,
1):证明△ADC与△BCE全等,所以AM=BN2):用相同的方法证明三角形全等,因为有两个等边三角形,所以肯定有相等角为60°,所以可以证明三角形MNC是等边三角形
如图,没图看条件说的,不是,如果还有其它的条件,那就有可能啦.如果你能证明AD=BC就可以说是.
作BM⊥AC于M,FN⊥AC于N∵四边形ACEF是菱形∴AC//FE,AF=AC∵E,F,B在同一直线上∴AC//BE∴BM=FN【平行线间的平行线段长相等】∵四边形ABCD是正方形∴BM=½
(1)AP=PF AP⊥PF证明:GP=AB=4PC=GC=GP=6-4=2BP=BC+CP=4+2=6∴BP=GF∴RT△ABP≅RT△PGF∴PA=FP 
BE=DF证明连接BD∵ABCD是平行四边形∴BP=DP∠FDP=∠EBP∠DFP=∠BEP∴△FDP≌△EBP(ASA)∴BE=DF