如图,点C在以AB为直径的圆o上,AD与过点C

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:10:54
如图 在RT三角形ABC中 角C=90度 点E在斜边AB上 以AE为直径的圆O与BC相切与点D 1求证AD平分角BAC

因为:圆O与BC相切与点D所以:OD⊥BC又因为:∠C=90°所以:AB⊥BC所以:OD//AB所以:∠CAD=∠ADO因为:OA=OD所以:∠OAD=∠ADO所以:∠CAD=∠OAD所以:AD平分∠

如图5.5.4,在RT△ABC中,∠C=90°,AC=12,BC=9,点D在AB上,以BD为直径的圆O切AC于点E,求A

连接OE在RT△ABC中,由勾股定理可求:AB=√AC²+BC²=15因为圆O切AC于点E所以OE⊥AC又因为∠C=90°所以OE‖BC所以OE/BC=AO/AB若设半径为x,则有

如图,在直角三角形ABC中,角C=90度,点E在斜边AB上,以AE为直径的圆O与BC相切于点D

你先把草图画出来,设圆心为O,连接DE、AD,∵D为切点,∴DO⊥BC,∴DO//AC,∴∠ADO=∠DAC,∵DO、AO都是半径,∴∠ADO=∠DAO,∴∠DAO=CAD,∴的证

如图,在Rt△ABC中,∠C=90度,点E在斜边AB上,以AE为直径的圆O与BC相切与点D 若AC=3,AE=4 求AD

AO=OD=4/2=2BO/AB=OD/AC=2/3BO/(BO+2)=2/3BO=4AB=4+2=6BC=√(6^2-3^2)=3√3AO/AB=DC/BC2/6=DC/3√3DC=√3AD=√(3

如图,已知在Rt△ABC中,∠C=90°,以AC为直径作圆O,交AB于D点,过点O作OE∥AB,交BC于E.

分析:(1)连接OD,利用同弧所对的圆周角等于所对圆心角的一半,得到∠HOD=2∠A,然后用等量代换得到∠ODE=90°,证明DE是⊙O的切线.(2)利用(1)的结论有∠ODE=90°,又已知∠OBE

如图,C为圆O直径AB上的一动点,过点C的直线交圆O

这道题没有具体的函数关系式这道题主要的是看我们的趋势判断能力因为这里面没有数值写不出具体的关系式只能说是一个抛物线的数值关系你们现在还没有学到高中才有的哈你也可以看看http://baike.baid

如图,AB为圆O的直径,点C为弧AB的中点,弦CE交AB于点F,D为AB延长线上一点,

连接OC.AB为直径,C为弧AB的中点,则:OC⊥AB,OC=AO=OB=3;BF=OB-OF=2.设BD=X,则DE=DF=2+X.DE为圆的切线,则:DE²=BD*AD,(2+X)

如图,在以点O为圆心,AB为直径的半圆中,D为半圆弧的中心,P为半圆弧上一点,且AB=4,∠POB=30°,双曲线C以A

(1)方法一:以O为原点,AB、OD所在直线分别为x轴、y轴建立平面直角坐标系,则点A(-2,0),B(2,0),P(3,1).设双曲线实半轴长为a,虚半轴长为b,半焦距为c,则2a=|PA|−|PB

如图,已知在平行四边形ABCD中,AB=4.∠DAB=135度.以AB为直径的⊙O经过点C.  &n

1、相切,2、6-兀,(要详解再说)再问:谢谢您为我解答。过程我会了。再答:感谢采纳,我的知道刚升至三级,呵呵。

如图,AB为半圆O的直径,以OA为半径作半圆M,C为OB的中点,过点C做半圆M的切线叫半圆M于点D,延长AD叫圆O于

大圆半径为2则小圆M半径为1C为OB中点则OC=OM=1CD为圆M的切线且MD=MC/2则直角△MDC中∠DMC=60则S△MDC=(根号3)/2在三角形ADM中,AM=DM外角DMC=60则∠DAM

如图,AB为圆O的直径,点C在圆O上,过点C作圆O的切线交AB的延长线于点D,已知∠D=30

(1)连接OC,∵CD切⊙O于点C∴∠OCD=90°(1分)∵∠D=30°∴∠COD=60°(2分)∵OA=OC∴∠A=∠ACO=30°;(4分)(2)∵CF⊥直径AB,CF=43∴CE=23(5分)

如图,在RT△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的圆O与BC相切于点D.若AC=3,AE=4

(1)作OF⊥AC于F∵BC与圆O相切于D∴OD⊥BC又∵∠C=90º∴四边形FCDO是矩形∴OF=CD,OD=CF∵AE=4,AC=3∴OA=OD=CF=2,AF=AC-CF=1根据勾股定

如图,AB为圆O的直径,C是圆O上一点,点D在AB的延长线上,且角DCB=角A

(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&

如图,点C在以AB为直径的⊙O上,CD⊥AB于点P,设AP=a,PB=B.

(1)∵AB为⊙O的直径,CD⊥AB于点P,∴在直角三角形ACB中,由射影定理知,PC2=AP•PB,∵AP=a,PB=b,∴CD=2PC=2PC2=2ab,(2)∵a+b=10,∴ab≤(a+b2)

如图,点C在以AB为直径的圆O上,CD⊥AB,垂足为P,设AP=a,PB=b

(1),设圆心O,AP=a,PB=b,AB=AP+PB=a+b,连接OC,OD,OC=OD=AB/2=(a+b)/2,OP=AO-AP=(a+b)/2-a=(b-a)/2,直角三角形OPC与直角三角形

如图,AB为圆O的直径,C为圆O上以点,AD和C点的切线互相垂直,垂足为D,求证AC平分角DAB

∵OC⊥CD,AD⊥CD∴OC‖AD∴∠OCA=∠CAD又∵AO=CO∴∠OCA=∠CAO∴∠CAD=∠CAO∴AC平分角DAB

如图,在三角形ABC中,角C=60度,以AB为直径的半圆O分别交AC、BC于点D、E

三角形ODE的形状是等边三角形CE=2圆中,0A=0D=0E=OB∠OAD=∠ODA,∠OEB=∠OBE根据四边形内角和∠ODC+∠OEC+∠C+∠DOE=360°180-∠ODA+180-∠OEB+

如图,在三角形ABC中,∠C=60,以AB为直径的半圆O分别与AC边,BC边交于点D,E

O为AB中点.OA=OB=OD=OE=R,所以∠OAD=∠ADO,∠OBE=∠BEO,又∠C=60°,所以∠OAD+∠OBE=120°,所以∠ADO+∠BEO=120°,∠BED+∠ADE=240°,