如图,点O为直线AB上一点,∠AOC=50度,OD平分∠AOC,∠DOE=90度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:17:40
如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE

设∠1=x,则∠2=3∠1=3x,(1分)∵∠COE=∠1+∠3=70°∴∠3=(70-x)(2分)∵OC平分∠AOD,∴∠4=∠3=(70-x)(3分)∵∠1+∠2+∠3+∠4=180°∴x+3x+

重新: 如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC\OD\OE,且OC平分∠AOD,∠B

∵直线AB∴∠AOD+∠BOD=180∵OC平分∠AOD∴∠AOD=2∠COD∵∠BOE=3∠DOE∴∠BOD=∠BOE+∠DOE=4∠DOE∴2∠COD+4∠DOE=180∴2(∠COD+∠DOE)

如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC,OD,OE,且OC平分∠AOD,

∠2与∠1是哪个?有图吗?再问:再答:����ocƽ�֡�AOD��AOC��50º���AOD��2��AOC��100º�ߡ�AOB��180º���BOD��180

如图,圆O的直径DF与弦AB交于点E,C为圆O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD,CD是圆O的切

24.证:连结AF则∠ABD=∠F∠ADG=∠ABD∴∠ADG=∠F,∵DF为⊙O的直径∴∠DAF=90°∴∠ADF+∠F=90°∴∠ADG+∠ADF=∠FDG=90°∴∠DAF=∠CDE=90°∵C

如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角形的直角顶点放在点O处,一边OM在

(1)直线ON平分∠AOC.理由:设ON的反向延长线为OD,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵OM⊥ON,∴∠MOD=∠MON=90°,∴∠COD=∠BON,又∵∠AOD=∠BON(对顶角

已知:如图,点O为直线AB上一点,过点O在直线AB的同侧作射线OD、OC、OE,且OD是∠AOC的平分线,∠DOE=90

OE是∠BOC的平分线.理由如下:∵OD是∠AOC的平分线,∴∠AOD=∠COD,又∠DOE=90°,∴∠COD+∠EOC=90°,∴∠AOD+∠EOB=90°,∴∠EOB=∠EOC,∴OE是∠BOC

如图,已知点O为直线AB上一点,OM、ON分别是∠AOC、∠BOC的平分线.求∠MON的度数.

/>因为:OM平分角AOC,所以:角AOM=角MOC因为:ON平分角BOC,所以:角CON=角BON所以:2角CON+2角MOC=180度,即:2角MON=180度所以:角MON=90度

如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角形的直角顶点放在点O处,一边OM在射线

0.0快点啊!我也在等啊!我只(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM-之间度数.快点做!快点发!http://zhidao.baidu.com/questio

如图 点o是直线ab上的一点,过点O作射线OC.

(1)已知∠AOC=60°,∴∠BOC=120°,又OM平分∠BOC,∠COM=12∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)延长NO,∵∠BOC=120°∴∠AOC=60°,当

已知:如图,AB为⊙O的弦,过点O作AB的平行线,交⊙O于点C,直线OC上一点D满足∠D=∠ACB.

(1)直线BD与⊙O相切.证明:如图,连接OB.∵∠OCB=∠CBD+∠D,∠1=∠D,∴∠2=∠CBD,∵AB∥OC,∴∠2=∠A,∴∠A=∠CBD.∵OB=OC,∴∠BOC+2∠3=180°.∵∠

如图①,O为直线AB上一点,过点O向直线AB上方作射线OC,且∠AOC=30度,将一直角三角板的直角顶点放在点O处,一边

(1)∠BOC=150°,∠BOM=90°.由题意得t秒后∠BOM=75°,即直角尺转过15°,所以t=5s(2)因为直角尺转过15°,所以此时∠AOC=90°,所以ON平分∠AOC.(3)起先∠MO

如图,点O为直线AB上任意一点,OC为射线,OE平分∠AOC,OF平分∠BOC,

1.∠AOC+∠BOC=180°∵OE,OF平分两个角∴∠EOC=1/2∠BOC,∠FOC=1/2∠AOC∠EOC+∠FOC=1/2∠BOC+1/2∠AOC=90°∴OE⊥OF2.互补:∠AOF-∠F

如图,点O为直线AB上任意一点,OC为射线,OE平分∠AOC,OF平分∠BOC.

1)OE与OF垂直证:角COB为50°,OF平分角COB,故角COF为25°,同理可知角EOC为65°,即角EOF为90°,则OE与OF垂直2)仍成立证:∠COB为a,则∠COF为a/2°,∠AOC为

如图1,点O为直线AB上一点,过点O作射线OC,将一直角三角形的直角顶点放在点O处

1)由角的平分线的定义和等角的余角相等求解;(2)由∠BOC=120°可得∠AOC=60°,则∠RON=30°,即旋转60°或240°时ON平分∠AOC,(3)因为∠MON=90°,∠AOC=60°,

如图,AB是⊙O的直径,C为圆周上的一点,过点C的直线MN满足∠MCA=∠CBA.

(1)证明:连接OC,∵AB是⊙O直径,C为圆周上的一点,∴∠ACB=90°,即∠ACO+∠OCB=90°,∵OC=OB,∴∠OCB=∠OBC,又∠MCA=∠CBA,∴∠MCA=∠OCB,∴∠ACO+

如图,AB为圆O的直径,C为圆O上一点,AD和过C点的直线垂直,垂足为D,AD交圆O于点E,且AC平分∠DAB.

连接CO,根据一条弧所对的圆周角等于它所对的圆心角的一半,所以∠COB=2∠CAB由AC平分∠DAB,所以∠COB=∠DAB即CO∥AD∠ADC=∠OCB=90°经过圆心且垂直于切线的直线必经过切点所

如图,AB为⊙O的直径,C在⊙O上,并且OC⊥AB,P为⊙O上的一点,位于B、C之间,直线CP与AB相交于点Q,过点Q作

证明:如图,连接PB、BR,则∠APC=45°,∠APB=90°;故∠BPQ=180°-∠APC-∠APB=45°;又∵∠APB=90°=∠BQR,∴B、Q、R、P四点共圆;于是∠BRQ=∠BPQ=4

如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°将一直角三角形的直角顶点放在点O处,

(1)已知∠AOC=60°,∴∠BOC=120°,又OM平分∠BOC,∠COM=12∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)延长NO,∵∠BOC=120°∴∠AOC=60°,当