如图,点P是三角形ABC的角平分线的交点,则角PBC加角PCA加角PAB等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 23:24:51
中线交点是中线的三等分点BPC里面等底同高BPC面积是10,然后三等分点等底同高BPA是俩BPE是10,同理APC是10加到一起是30.引用怎样证明三角形的重心(中线的交点)是中线的一个三等分点
答案是肯定的!既然P点在AB、BC的垂直平分线上,那么PA=PB=PC.因而P点必在AC的垂直平分线上.P点是△ABC的外心——外接圆的圆心.
选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,
延长BP与AC交与M在△ABM中AB+AM>BP+PM(1)在△CPM中cM+PM>CP(2)(1)+(2)AB+AM+cM+PM>BP+PM+CPAB+AC>PB+PC
分析:(1)由三角形ABC中任意一点P(x0,y0),经平移后对应点为P′(x0+5,y0-2),可得三角形ABC的平移规律为:向右平移5个单位,向下平移2个单位,即可得出对应点的坐标.(2)利用对应
A.2.5,原因:点到直线的距离,垂线段最短,而AC垂直于CB,所以,AC即为最短距离,AP不可能小于它,所以A错
作法:1.作⊙P,使点Q在⊙P内2.在⊙P上任取一点A,连接AQ并延长,交⊙P于点D3.以D为圆心,DQ为半径画弧,交⊙P于点B,C4.连接AB,AC,BC则△ABC就是所求作的圆因为⊙P的大小是不定
ACP4显然是等腰直角三角形,它AC上的高显然大于ACP1的AC上的高即ACP4的面积最大,它的底CP4=2√2,高AP3=√2,所以面积是2
连接BP并延长交AC于G由重心性质得,BP:PG=2:1因为DE//AC所以BD:DA=BP:PG=2:1所以BD:BA=2:3,AD:AB=1:3因为DE//AC,DF//BC所以△BDE∽△BAC
相等再答:没让写证明就别写再问:让写证明了。。。再答:设角A为x度或直接使用。我没空呃作业还有不少。。。
因为EF∥BC,所以∠EPB=∠CBP因为BP平分∠EBC所以∠EBP=∠CBP所以∠EPB=∠EBP,所以BE=PE同理PF=CF所以EF=BE+CF
当DE平行AB时∠DCA=∠CAB又因为∠DCA=∠PCA所以PC=PA同理可证PC=PB即P为AB中点AP=5DE=CD+CE=2PC,即求PC最大值最小值PC最大时为8(P在A点)最小时4.8(P
连接AD,因为点P在AD的垂直平分线上,所以有PA=PD,∠PAD=∠PDA又因为∠PAD=∠CAP+∠CAD,而∠PDA=∠ABP+∠BAD等量代换就可得∠CAP+∠CAD=∠ABP+∠BAD,又因
等边三角形是三角形BDP和三角形CEP∵BE是∠B的角平分线∴∠DBP=∠PBC又∵DE平行BC∴∠DPB=∠DBP(两直线平行,内错角相等)∴PD=DB同理PE=EC∴DB+EC=DE
∵∠1=∠2+∠3,∴∠2=∠1-∠3,∠A=∠ACE-∠ABC,∵点P是∠ABC和外角∠ACE的角平分线交点,∴∠A=2∠1-2∠3=2(∠1-∠3)=2∠2,∴∠p=1/2∠A
在BC延长线上取一点D∵BP平分∠ABC,CP平分∠ACD∴∠ABC=2∠PBC,∠ACD=2∠PCD∵∠PCD是△PBC的外角∴∠PCD=∠P+∠PBC两边都乘以2得2∠PCD=2∠P+2∠PBC即
∵△P‘AC是△PAC绕点A旋转得到的∴△PAB≌△P’AC∴∠P‘AC=∠PAC∵△ABC是等边三角形∴∠BAC=60°∴∠PAP’=∠P‘AC+∠PAC=∠PAC+∠PAB=∠BAC=60°记得及
如图:过P作PD⊥AB,PE⊥AC,PF⊥BC,重足分别是D、E、F因为:PB,PC分别是外角平分线所以:PD=PF,PE=PF所以:PD=PE所以:点P在角BAC的平分线上