如图1 点E是正方形ABCD边上任意一点过点C作直线CF⊥AE,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:04:32
设BM与AC交于点E∵BC平行AD∴△BEC相似△MEA∵正方形ABCD的边长为8厘米,M为AD边上的中点∴△BEC:△MEA=1:2△MEA,AM边的高为3分之8所以S△MEA=(3分之8)×4÷2
易证△ABE∽△DEH∴AB/DE=AE/DH1/(1-x)=x/y∴y=-x²+x=-(x-1/2)²+1/4当x=1/2时,y最大,最大值是1/4
1.AB=BC,BE=BG,彼此垂直,BAE-BCG全等,所以AE=CG2.ABE-DHE相似,DH/(AD-AE)=AE/AB,y=x(1-x)3.BAE-BEH相似时,AE/AB=EH/BH设AE
三角形EDH与三角形BAE相似设AE=x则ED=1-x可分别求得EH和BE根据三角形HEB和EAB相似可得E为AD的中点
帮你找到了原题,请查看
你说的是上面这道题目吗?由于过程太长,我把我在求解答的网上找到的一样的题目发给你真的是一样的哦~过程非常详细,且易懂求解答是很专业的数学题库网站,以后有问题可以先去那里查一下非常方便快捷,再问:不是!
连接AE∵AD∥CE∴△ADF∽△CEF∴S△ADF∶S△CEF=(AB∶CE)^2=(2∶1)^2=4∶1∴S△ADF=4S△CEF而S△AEF∶S△CEF=AF∶CF=AB∶CE=2∶1(两个三角
1:延长EF交正方形外交平分线CP于点P,是判断AE与EP的大小关系,并说明理由\x0d2:在AB边上是否存在有一点M,使得四边形DMEP是平行四边形,若存在,请证明,若不存在,请说明理由各位速度
(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E
很高兴为您解答!分析:(1)在AB上取BH=BE,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECP,从而得到AE=EP;(2)先证△DAM≌△ABE,进而可得四边形DMEP是平行四边形
由题意可知:当动点P从A运动到B时,S△ABE=12×1×1=12,当动点P从B运动到C时,S△ACE=12×12×1=14,由于14<13<12,因此满足题意的点P的位置只有两种情况(2分)①当0<
,在AB上取BM=BE,连接EM,∵ABCD为正方形,∴AB=BC,∵BE=BM,∴AM=EC,∵∠1=∠2,∠AME=∠ECP=135°,∴△AME≌△ECP,∴AE=EP;(3)存在.顺次连接DM
(1)AE=EP.证明:设AB=X,BE=Y,则EC=X-Y.作PG垂直BC的延长线于G,易知PG=CG,设∠BAE+∠AEB=90°=∠AEB+∠PEC,则:∠BAE=∠PEC;又∠B=∠PGE=9
http://ask.tongzhuo100.com/forum/55652/再问:为什么1\x=1\(1-x)啊?再答:接着前面的2个小题再问:还是不明白再答:前面有BE/EH=1/(1-X),BE
1)∵BG=EB,BC=AB,∠CBA=∠EBG∴∠EBA=∠GBC(同角的余角相等)∴△BEA≌△BGC,∴AE=CG(2)易证得△BCG∽△EDH又∵△BEA≌△BGC,∴△BAE∽△EDH∴EH
对照你的图形阅读下列内容:设AE=x,则BE=(6-X)BF=XS(EFGH)=EF²=X²+(6-X)²=2X²-12X+36这是一个开口向上的抛物线,当X=
(1)当CF=4时,由切线的判定定理可知,AD,BC均是半圆的切线,故FB=FM,AE=EM.设AE=EM=X,过E作BC边上的高,由勾股定理可列:(X-2)^2+6^2=(2+X)^2解得:X=4,
连接ED,在EF上画出点G使EG=AE,连接DG因为ABCD为边长为1的正方形(已知)所以AD=AB=BC=DC=1角A=角B=角C=角ADC=90度因为三角形BEF的周长为2(已知)即EB+EF+B
igxiong008是对的~
自己做,即使我做过.学习为自己的