如图ab是圆o的弦,CD为直线上两点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 01:43:00
oc=4,ch=2根号3,所以oh=2,ah=6,ac=4根号3,如果连接ad的话,则三角形acd为等边三角形,圆周上到直线AC的距离相当于圆周上到直线DC的距离,因为oh=2,所以bh=2,ah=6
1,∵E是弧ADB的中点,AB是圆O的直径∴OE⊥AB∴DC∥OE∴∠OEC=∠ECD∵△OEC是等腰三角形∴∠OEC=∠OCE∴∠OCE=∠ECD∴CE平分∠OCD2,∵∠BAC=∠HCB=30,∠
24.证:连结AF则∠ABD=∠F∠ADG=∠ABD∴∠ADG=∠F,∵DF为⊙O的直径∴∠DAF=90°∴∠ADF+∠F=90°∴∠ADG+∠ADF=∠FDG=90°∴∠DAF=∠CDE=90°∵C
AB与以CD为直径的圆相切证明:设CD与圆O的切点为E,连接OE,过点E作EF⊥AB于F,连接AE、BE∵CD切圆O于E∴OE⊥CD∵AC⊥CD,BD⊥CD∴AC∥OE∥BD∵OA=OB∴OE为梯形A
过A,O,B,分别作AE⊥CD,OF⊥CD,BG⊥CD于E,F,G所以AE‖OF‖BG又因为AO=BO,所以OG是梯形AEGB的中位线,所以OG=(AE+BG)/2连OC,在直角三角形OCF中,OC=
有两个l连接AC,OC,过点O作OE垂直于AC,垂足为E,AB垂直于CD,垂足为F.,因为OA=4=OC,CF=CD的一半,所以CF=2乘以根号3.所以OF=2,AF=4+2=6.然后可求OE=2,所
∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE
∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10
(1)角CEA=角D.(2)结论仍成立.证明:CD为直径,则∠DFC=90°,得∠D+∠DCF=90°;点C为弧AB的中点,则CD垂直AB,得:∠CEA+∠DCF=90°.所以,∠CEA=∠D.
作OF垂直AB,则AB=BF=8.5,EF就是点O到CD的距离为4.5设秋千的固定点为A,最低点为B,最高点为C、D,连接CD交AB于O则OC=OD=4m,OB=1.3-0.3=1m,设秋千绳长为x,
过点O作,OE⊥CD,连接OC∵OE⊥CD,且CD=4倍根号3∴CE=DE=2倍根号3(垂经定理)∵AB=8∴OC=4∴OE=2(勾股定理)∵CE>OE∴CD为直径的圆与直线AB相交
连BF易证∠ABF=∠ADF(都是弧AF所对的圆周角)又DF是直径∠ADG=∠ABD∴∠FDG=∠ADF+∠ADG=∠ABF+∠ABD=∠FBD=90°∴DG是⊙O的切线即CD是⊙O的切线
过O作直线OG⊥CD于G,连接OD,则OG∥AE∥BF.根据垂径定理,得GD=12CD=12×8=4.又因为OD=12AB=12×10=5,根据勾股定理,得OG=52−42=3.由于O是AB中点,OG
(1)证明:连接OE,∵DE∥OA,∴∠COA=∠ODE,∠EOA=∠OED,∵OD=OE,∴∠ODE=∠OED,∴∠COA=∠EOA,又∵OC=OE,OA=OA,∴△OAC≌△OAE,∴∠OEA=∠
∠ACG=∠ABC=∠AFC,∠CAF公共,⊿ACG∽⊿AFC即AC÷AF=AG÷AC故AC^2=AG*AF
证明:(1)连接BC,OC∵AB是⊙O的直径∴∠ACB=90°∵AD⊥CD∴∠ADC=90°∴∠ACB=∠ADC∵OA=OC∴∠OCA=∠OAC∵直线CD切⊙O于点C∴∠OCA+∠ACD=90°又∠O
过O作OG⊥CD于G,连接OC,如图所示,∵OG⊥CD,CD=8cm,∴G为CD的中点,即CG=DG=4cm,在Rt△OCG中,OC=12AB=5cm,CG=4cm,根据勾股定理得:OG=OC2−CG
1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的
证明:连接AC、AD、AG、DG,∵AB是圆O的直径,∴∠AGB=RT∠,AE⊥CD,BF⊥CD,E,F分别为垂足,∴四边形AEFG是矩形.∴AE=GF,EF//AG,∴∠ADE=∠DAG,∴②弧AC