如图△ABC是直角三角形 且 角ABC=90° 四边形BCDE是平行四边形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:06:15
如图,在△ABC中,已知CD是AB边上的高,且CD²=AD×BD,则△ABC是直角三角形.请说明理由.

一定要勾股定理么.这分明是射影定理的逆向证明.由CD是AB边上的高∴△CDA与△CDB是直角三角形∴CD²+AD²=AC²,CD²+BD²=BC

已知:如图,CD、C’D’分别是直角三角形ABC、直角三角形A’B’C’斜边上的高,且CB=C’B’,CD=C’D’求证

因为CD、C’D’分别是直角三角形ABC、直角三角形A’B’C’斜边上的高所以角cdb=角c'd'b'=90因为CB=C’B’,CD=C’D’所以bd=b'd'所以三角形cdb全等于三角形c'd'b'

如图,已知△ABC是等腰直角三角形,把△ABC绕点A逆时针转45°得到△ADE,连接DB,求角BDE的度数

设∠EDB为x°,则∠DBE为(90-x)°因为AD=AB所以45+x=90-x°x=22.5°要给分哦

已知:如图,在△ABC中,D是AB上一点,且DA=DB=DC.求证:△ABC是直角三角形.

∵在△ABC中,D是AB上一点,且DA=DB=DC,∴CD=12AB,∴△ABC是直角三角形.

如图,△ABC中,CD是AB边上的高,且CD²;=AD乘BD,求证三角形ABC是直角三角形

因为CD²;=AD乘BD,AD/CD=CD/BD又因角CDA等于角CDB等于90度所以三角形ADC和三角形CDB相似,角A等于角DCB角A加角ACD等于90度,所以角DCB加角ACD等于90

如图,在△ABC中,CD是AB边上的高,且CD²=AD×BD,求证:△ABC是直角三角形

∵CD²=AD×BD∴CD/BD=AD/CD∵CD是AB边上的高∴∠ADC=∠CDB=90°∴△ADC∽△CDB(SAS)∴∠ACD=∠CBD又∵∠BCD+∠CBD=90°∴∠ACB=∠AC

已知:如图,在△ABC中,CD是AB边上的高,且CD²=AD×BD.求证:△ABC是直角三角形

因为CD²=AD×BD所以CD/AD=BD/CD所以RT△CDA∽RT△BDC所以∠ACD=∠CBD又因为∠CBD+∠DCB=90°所以∠ACD+∠DCB=∠ACB=90°得证.再问:要利用

如图,△ABC中,CD是AB边上的高,且CD⒉=AD×BD,求证:△ABC是直角三角形.

证明三角形相似CD*CD=AD*BD所以AD/CD=CD/BD又因为直角所以三角形ADCCDB相似角ACD=CBD角ACD+BCD=CBD+BCD=90度所以得到题证再问:证明三角形相似是什么意思啊?

如图,△ABC是直角三角形,∠ACB=90°,∠B=30°,以点C为旋转中心,将△ABC旋转到△A'B'C'的位置,且使

因为将三角形ABC旋转到三角形A'B'C的位置所以角B'=角BAC=A'CAB=A'B'所以三角形A'CA是等腰三角形角A'=角BAC因为角ACB=90度角B=30度所以AC=1/2AB角ACB+角B

如图,三角形ABC是等腰直角三角形

50平方厘米,利用旋转

已知:如图,在△ABC和△DBE是等腰直角三角形,角ABC=角DBE=90°且A,D,E,三点在一条直线上,求证:AE=

【AB在∠DBE内】证明:∵⊿ABC和⊿DBE是等腰直角三角形∴AB=BC,BE=BD,∠ABC=∠DBE=90º∴∠DBC=∠EBA【两角均为∠ABD的余角】∴⊿ABE≌⊿CBD(SAS)

如图,AD是等腰三角形ABC底边BC上的中线,且AD=BD=CD求证:△ABC是等腰直角三角形.

AD是等腰三角形ABC底边BC上的中线,则AD垂直平分BC,∠ADB=∠ADC=90°,且AD=BD=CD,∠BAD=∠ABD=(180°-∠ADB)/2=(180°-90°)/2=45°,同理∠CA

如图abc是等腰直角三角形

证明:连接AD∵△ABC是等腰直角三角形,D是BC的中点∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,∴AD=BD(与下面两式用大括号括起来)∠DAQ=∠DBPBP=AQ,∴△BPD≌△AQD(SA

如图,已知AD是三角形ABC的高,且AB²=BD*CD求证:三角形ABC是直角三角形

证明:∵AB^2=BD*CD∴BD/AB=AB/CD又∵∠B=∠B∴△ABD相似△CBA∴∠BAC=∠ADB=90°∴△ABC为直角三角形

如图,在RT△ABC中,角C=90°,角A=60°,且a+b=3加根号3,解这个直角三角形.

∵∠C=90°,∠A=60°∴∠B=30°∴b=1/2c∵c²=a²+b²∴4b²=a²+b²a=√3b(取正值)∵a+b=3+√3∴√3b

如图,三角形abc是直角三角形

连AD、EF,可证△ADE≌△CDF,△ADF≌BDE,所以DE=DF,AE=CF=5,AF=BE=12,由勾股定理可得EF=13,DE=DF=6.5乘根号2,S△DEF=169/8.

如图 已知在△abc中,cd是ab边上的高,且cd^=ad*bd,则△abc是直角三角形,请说明理由

根据已知条件可知直角三角形adc和bdc的直角边对应成比例,对直角三角形来说两边成比例第三边也成比例如△ABC三边为abc成为斜边另一个直角三角形三边满足为akck以为a²+b²=

如图,已知:在△ABC中,CD是AB边上的高,且CD²=ADXBD.则△ABC是直角三角形.请说明理由.

证明:∵CD²=ADXBD∴△CDA∽△BDC∴∠ACD=∠B又∠CDB=90°∴∠BCD+∠B=90°∴∠BCD+∠ACD=90°∴△ABC是直角三角形

如图,△ABC是腰长为1的等腰直角三角形,A是直角顶点,且D、B、C、E在同一条直线上,∠DAE=135°

∠E=∠ACB-∠CAE=45°-∠CAE∠D=180°-∠E-∠DAE=180°-(45°-∠CAE)-135°=∠CAE同理,∠E=∠BAD所以△ADB∽△EAC所以DB/AC=AB/CEDB×C