如图圆心o与△ade
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:44:08
连结OP∴∠OCP=∠OPC=∠DCP∴OP//CD∵CD⊥AB∴OP⊥AB∴∴P是弧AB中点
(1)连接OE,∵⊙O与BC相切于E,∴OE⊥BC,∵AB⊥BC,∴AB∥OE,∴∠BAE=∠OEA,∵OA=OE,∴∠1=∠OEA,∴∠1=∠BAE,即AE平分∠CAB.(2)2∠1+∠C=90°,
相似∵∠1=∠2,∠DOC=∠BOE∴∠D=∠B又∵∠A=∠A∴△ABC与△ADE相似
(1)连接OE,OD,在△ABC中,∠C=90°,AC+BC=8,∵AC=2,∴BC=6;∵以O为圆心的⊙O分别与AC,BC相切于点D,E,∴四边形OECD是正方形,tan∠B=tan∠AOD=ADO
如图,△ADE和△ABC有公共的顶点A,∠1=∠2,∠ABC=∠ADE.则△ABD∽△又因为∠1=∠2所以△ABD∽△ACE(两边对应成比例且夹角相等的三角形相似
90度证明:因为.圆O与圆G内切于A点,OA是圆O的半径,OH是圆G的直径所以OA,OH在一条直线上,即延长OH交圆O与I点,AI为圆O的直径因为AH⊥BC所以AI⊥BC且平分BC所以三角形ABC为等
△与○的相切,共有4次:第一次,为○在右侧与AC相切;第二次为○在右侧与AB相切;第三次为○在左侧,与AC相切;第四次为○在左侧,与AB相切(排序依据后面的详细计算)当第一次相切时,如图1所示:OE⊥
过点O作OH⊥AB于H因为OA=OB,OH⊥AB于H所以AH=BH,这个是等腰三角形三线合一再由垂径定理,圆O中,OH⊥弦CD所以CH=DH所以AH-CH=BH-DH即AC=BD
连OD,过O作OE⊥AB,垂足为E,1)因为AO是平分线所以OD=OE,所以O到AB的距离等于半径OD所以AB与圆相切2)△ABC面积=(1/2)*AB*AC=9△ABC面积=S△ABO+S△ACO=
1)连CO,DO,EO,设圆O的半径为r,因为AC+BC=8,AC=2所以BC=6△ACO面积=(1/2)*AC*OD=r,△BCO面积=(1/2)*BC*OE=3r,△ABC面积=(1/2)*AC*
解题思路:利用切线的判定求证。解题过程:最终答案:略
设OA=R,AD=2RcosA,AB=3AD=6RcosA;AC=1.5R又AC/AB=cosAAC、AB代进去,cosA=1/2,A=60°B=30°
1、证明:连接CE∵直径BC∴∠BEC=90∴∠ACE+∠CME=90∵AD⊥BE∴∠CAD+∠AMB=90∵∠CME=∠ANB∴∠ACE=∠CAD∵∠ACE、∠FBE所对应圆弧都为劣弧EF∴∠ACE
解题思路:(1)连接OD、BD,根据圆周角定理得到∠BDC=90°,则E为Rt△ABD的斜边AB的中点,根据直角三角形斜边上的中线性质得到DE=BE=1/2AB,则∠EBD=∠EDB,由于∠EBD+∠
(1)假设第一次相切时,△ABC移至△A′B′C′处,A′C′与⊙O切于点E,连OE并延长,交B′C′于F.设⊙O与直线l切于点D,连OD,则OE⊥A′C′,OD⊥直线l.由切线长定理可知C′E=C′
连接OD,过O作AC的垂线,设垂足为G,∵∠C=90°,∴四边形ODCG是矩形,∵CD是切线,CEA是割线,∴CD2=CE•CA,∵CD=2CE=4,∴AC=8,∴AE=6,∴GE=3,∴
相离作CD⊥AB于点C,因为S=1/2AC*BC=1/2AB*CD所以CD=5*12/13=60/13>3=r所以AB与圆相离(2)设圆O移动到O~时相切,作O~D⊥AB于点E,OD=3由O~E与CD
证明:过O作OE⊥AC,交AC于E∵△ABC中,AB=AC∴∠B=∠C∵O是BC的中点∴BO=CO∵圆与AB相切于点D∴OD⊥AB,且OD为半径∵OE⊥AC∴Rt△BDO全等于Rt△CEO∴OD=OE
(1)BC所在直线与小圆相切过O作OF⊥BC在直角△ACO和直角△OCF中,∠AC0=∠FCO,∴AO=FO又AO为半径,所以F在小圆上,所以直线BC外切于小圆(2)关系:BC=AD+AC在直角△AC
(1)①,②,③.(2)=90°.依题意可知,△ACB旋转90°后AC为⊙O直径,且点C与点E重合,因此∠AFE=90°.∵AC=8,∠BAC=60°,∴AF=,EF=1/2AC=4,EF=4倍根号3