如图在等腰直角三角形中,角ABC等于90,d为ac上中点,过d做de垂直df

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:38:10
如图,在等腰直角三角形ABC中,AB=BC=8cm,角ABC=90度,动点P从点A出发,沿AB向点B移动

设AP=XPR‖BC所以△PRA是等腰直角三角形∴PR=XAR=根号2*X∵AB=BC=8厘米∴AC=8根号2∴RC=8根号2-X*根号2过P点做AC的垂线交AC于点H∵AP=X所以PH=(根号2)/

如图,在△ABC中,∠B=30°,AC=√2,等腰直角三角形ACD的斜边AD在AB边上,求BC的长

根据正弦定理,BC/sin45°=AC/sin30°∵AC=√2∴BC=sin45°·AC/sin30°=√2·√2/2÷1/2=2

如图,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中

如图②,恕我眼拙,点D在AB边上么?题目有问题啊还有,BF=CD,且BF⊥CD∵ABC等腰直角△,+O为AB中点∴BO=CO=AO,角BOF=角COD同理:FO=OD=OE∴△BOF≌△COD∴BF=

如图,在等腰直角三角形ABC中,

证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH

如图,在等腰直角三角形abc中,∠b=90°,ab=bc,o是如图,在直角三角形ABC中,∠B=90度,AB=cb,O是

证明PE=DO因为,∠B=90度,AB=BC,所以三角形ABC为等腰直角三角形,又O是AC上的中点,所以BO垂直AC,∠C=∠CBO=45°由已知PB=PD可知△BPA为等腰三角形,∠PDB=∠PBD

如图1,在等腰直角三角形ABC与等腰直角三角形DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,C

:(1)FG⊥CD,FG=CD.(2)延长ED交AC的延长线于M,连接FC、FD、FM,∴四边形BCMD是矩形.∴CM=BD.又△ABC和△BDE都是等腰直角三角形,∴ED=BD=CM.∵∠E=∠A=

如图,在等腰直角三角形ABC中,角C=90°,AB=4,作CD⊥AB于D,将角BCD绕点C顺时针旋转α﹙0°<α<90°

过点C作CE⊥CQ,且CE=CQ(实际上是将CQ顺时针90°至CE处),连结AE、PE∵∠ECQ=90°=∠ACB∴∠ACE=∠BCQ∵AC=BC,CE=CQ∴△ACE≌△BCQ∴∠CAE=∠B=45

如图,在等腰直角三角形ABC中.

连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5

如图,在等腰梯形ABCD中,AB//CD,<A=450,AB=10cm,CD=4 cm,.等腰直角三角形PMN的斜边MN

因为AC⊥BD,设AD,BC相交于O,所以等腰梯形ABCD的面积=1/2*(AC*BO)+1/2*(AC*DO)=1/2*AC*AC=100AC=10根号2在直角三角形AOB中,AO=BO角CAB=4

如图,在梯形ABCD中,AD//BC,CE⊥AB于E,△BDC为等腰直角三角形,

我觉得结论应为CF=AB+AF延长CD,BA相交于G因为AD∥BC,三角形BDC为等腰直角三角形,所以∠1=∠2=∠BCD=∠3=45度因为∠BEC=∠BDC=90度,对顶角∠EFB=∠DFC所以∠4

如图,在等腰直角三角形ABC中,角B=90度,AB=BC=8,四边形PQCR是三角形ABC内的平行四边形,且SPQCR=

Sabc=32..所以刚好一半一半.AP=4再问:请问是怎么求的?再答:等腰直角。。CA平行于RP。。。所以RP垂直于AB。。所以那两个小三角形也是等腰之间三角形啦。。。然后S两个△之和是16.。。。

如图,在平面直角坐标系中,△AOB为等腰直角三角形,且OA=AB

解∶设AF与y轴的交点为P∵AE=BE,AB=AO,∴AE=½AO,∴∠AEO=60º不好意思,我只能做到这里,其余的我也不知道

如图,平面直角坐标系中,△AOB为等腰直角三角形,且OA=AB.

(1)(1,3)(2)不会变延长直线CA,与y轴交于一点,记为Q由于OC=OA,设C(x,0)所以x^2=(√3)^2+3^2=12,即x=2√3所以C(2√3,0)由此确定直线AC的方程为y=-√3

如图,平面直角坐标系中,△AOB为等腰直角三角形,且OA=AB.

(1)如图所示:△A1OB为所画的轴对称图形(1分)过A作AC⊥x轴于C,A1D⊥x轴于D,∵A(-3,1),∴AC=1,OC=3,∵OA=AB,∠BAO=90°,∴∠BOA=45°,∴∠BOA1=4

如图,在等腰直角三角形ABC中

反复运用勾股定理、等量代换就可以了.PA²=(AD+PD)²1PB²=(BD-PD)²2其中AD=BDPC²=CD²+PD²=AD