如图所示,已知p是三角形所在平面

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:13:04
已知P是三角形ABC所在平面内一点,若向量CB=γ向量PA+向量PB ,γ属于R,则点P 一定在

向量CB=γ向量PA+向量PB,γ属于RCB+BP=yPA,即CP=yPA.A,C,P共线.选B

已知P是三角形ABC所在平面内一点,若PA(向量)*PB(向量)=PB*PC=PC*PA,则P是三角形ABC的什么心?

垂心PA(向量)*PB(向量)=PB*PCPB*(PA-PC)=0PB*CA=0即PB与CA垂直同理可证PA与BC垂直,PC与AB垂直所以是垂心

已知P是三角形ABC所在平面内的一点,若CB向量=入PA向量+PB向量,入属于R,则点P一定在哪?..

由CB向量=λPA向量+PB向量得CB向量-PB向量=λPA向量,即CP向量=λPA向量,那么点P一定在直线AC上.

已知P是三角形ABC所在面外一点,PA=PB=PC,角BAC=90°,求证:平面PBC垂直平面ABC

D是BC的中点那么PD垂直于平面ABC所以平面PBC垂直平面ABC

已知P是三角形ABC所在平面外一点,D.E分别是三角形PAB.三角形PBC的重心.

四边形PABC是空间四边形作AB、BC的重点M、N连接PM、PN(过D、E)易得DE平行且相等于2/3MNMN平行且相等于1/2AC所以DE平行且相等于1/3AC

如图所示,P是三角形ABC所在平面外一点,A',B',C'分别是三角形PAB.PBC.PAC的重心

作AB中点M,AC中点N,连MN则PM,PN分别过A',C',则由于PA':PM=2:3平面A`B`C`平行平面ABC

如图所示,已知p是三角形ABC内一点,是说明PA+PB+PC大于 二分之一(AB+BC+AC)

很简单再答:两边之和大于第三边再问:算式再问:过程再答:你把两边都乘2再答:因为PA+PB大于AB再答:PA+PC大于AC再答:PB+PC大于BC再答:所以懂了吧再问:哦哦再答:呵呵

已知P是三角形ABC所在平面外一点,PA垂直于BC,PB垂直于AC,求证:PC垂直于AB

分别作三角形ABC各边垂线AWBKCM交于一点设为Z点连PZPA⊥BCAZ⊥BC=>BC⊥平面PAZ所以BC⊥PZ同理PB⊥ACBZ⊥AC所以AC⊥平面PZB所以AC⊥PZ所以PZ⊥平面ABC所以PZ

已知p是三角形abc所在平面外一点,pa垂直平面abc,二面角a..pb..c是直二面角.求证:ab垂直bc.

过点A作AD⊥PB于D点∵A-PB-C是直二面角,∴平面PAB⊥平面PCB∵AD属于平面PAB∴AD⊥平面PCB∵BC属于平面PCB∴BC⊥AD∵PA⊥平面ABC,BC属于平面ABC∴PA⊥BC∴BC

已知等边三角形abc的高为4,在这个三角形所在的平面内有一点p,若点p到ab的距离是1,点p到ac的距离是2,则点p到b

如图  分别作平行于ab的距离为1和2的平行线,有两个交点,即对应的到bc最远与最近的P点,再利用相似三角形即可求得最远距离 和最近距离因为ad=4 所以ab=

已知P是三角形ABC所在平面外一点,PA垂直与PC,PB垂直与PC,PA垂直与PB

PA垂直与PC,PB垂直与PC==》PC⊥平面PAB,所以PC⊥AB又PH⊥平面ABC所以CH⊥AB;同理AH⊥BC,BH⊥CA;所以P在面ABC上的射影H是三角形ABC的垂心

在已知三角形ABC所在的平面上存在一点P,是他倒三角形则称三个顶点的距离之和最小

(2)①证明:由托勒密定理可知PB•AC+PC•AB=PA•BC∵△ABC是等边三角形∴AB=AC=BC,∴PB+PC=PA,②P′D、AD,如图,以BC为边长在△

已知P是三角形ABC所在平面内的一点,若向量CB=x向量PA+向量PB,则点P一定在AC边所在的直线上 给出证明

证明:因为向量CB=x向量PA+向量PB,所以向量CB-向量PB=x向量PA,即向量CP=x向量PA,所以P在AC所在直线上希望能帮到你O(∩_∩)O~

已知P为三角形ABC所在平面外一点,G1、G2、G3、分别是三角形PAB,三角形PCB,三角形PAC的重心,求证:平面G

设H1,H2,H3分别为PG1,PG2,PG3交于AB,BC,AC的点,则G1G2//H1H2,G2G3//H2H3.所以,G1G2//面ABC,G2G3//面ABC.又,G1G2与G2G3相交,故面

已知P是三角形ABC所在平面外一点 PA,PB,PC两两垂直,O是三角形ABC的垂心.看好问题

(1):∵PA⊥PB,PA⊥PC∴PA⊥PBC∴PA⊥BC∵O是三角形ABC的垂心∴OA⊥BC,∴BC⊥AO同理AC⊥BO,AB⊥CO,∴OA⊥ABC得出结论(2):延伸AO交BC与D,则AD⊥BC由

已知P是三角形ABC所在平面内一点,且向量PA+向量PB+向量PC=向量AB,则点P为什么在AC边上?

向量PA+向量PB+向量PC=向量AB向量PA+向量PC=向量AB-向量PB=向量AB+向量BP=向量AP2向量PA+向量PC=0可见p在AC上

已知P是三角形ABC所在平面外一点,D.E分别是三角形PAB.三角形PBC的重心.求证:DE//AC,且DE=1/3AC

证明:连PD并延长交AB于点F,连PE并延长交CB于点G,连FGPD/PF=PE/PG=2/3∴DE//FG又∵FG=1/2*AC∴DE=1/3*AC

已知等边三角形ABC的高为4,在这个三角形所在的平面内有一点P,若点P到AB的距离是1,

本题是在一道经典习题基础上衍化出来的,那道习题是说等边三角形内的任意一点到等边三角形三边的距离之和为定值,定值等于已知等边三角形的高.如图①,P是⊿ABC内部的一点,PD⊥BC,PE⊥AC,PF⊥AB

已知点p在三角形ABC所在平面内,向量PA*PB=PB*PC=PC*PA,如何证明p是三角形的垂心?

∵向量PA·向量PB=向量PC·向量PA, ∴向量PA·向量PB-向量PA·向量PC=0,∴向量PA·(向量PB-向量PC)=0, ∴向量PA·向量CB=0, ∴向量PA⊥向量CB,∴PA⊥CB.同理