如图正方形abcd和正方形cefg ch等于根号5

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:13:20
如图,正方形纸片ABCD和正方形EFGH的边长都是1,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过程中,

(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E

如图,在正方形ABCD中,CE⊥DF,若CE=10cm,求DF的长

∵CE垂直于DF∴∠CDF+∠DCE=90而根据正方形ABCD可知,∠CDF+∠DFC=90∴∠DFC=∠DCE而根据正方形ABCD可知,∠DCE=∠CEB∴∠DFC=∠CEB根据三角形全等定理,三角

如图,ABCD为正方形,已知DE//AC,AC=AE.求证:CE=CF.

证明:过D,E点分别作DH,EG垂直于AC,垂足是H,G∵ABCD是正方形,∴DH=1/2AC,又AC=AE∴DH=1/2AE∵DE//AC,所以DH=EG,即EG=1/2AE∴∠EAG=30.(在直

如图在正方形ABCD中CE垂直DF,求证CE=DF

证明:设CE、DF相交于点O∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠B=∠FCD=90=∠CDF+∠CFD∵CE⊥DF∴∠CFD+∠BCE=90∴∠BCE=∠CDF∴△BCE全等于△CD

我们规定正方形四条边都相等,四个角都等于90°,如图,正方形ABCD的边CD在正方形ECGF的边CE上

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.(1)观察猜想BE与DG之间的大小关系,并证明你的结论;(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过

如图,已知正方形ABCD和正方形CEFG,且正方形ABCD边长为12cm,则图中阴影部分面积是多少?

【推荐方法:】其实,连接CF,因为∠BFP=45°,∠ANP=45°,所以PF∥AN,△ANB和△ANF同底等高,面积相等,等于大正方形面积的一半.12×12÷2=144÷2=72平方厘米小正方形的边

如下图,已知四边形ABCD和CEFG都是正方形,且正方形ABCD的边长为10厘米,那么图中阴影部分的面积是多少?如果CE

不管CEFG多大,面积均为50cm2,以BD为三角形的底,因为CF‖BD,所以三角形的高始终是CF和BD的距离,因此.说明同底等高的三角形面积相等

一道数学题:如图正方形ABCD和等腰直角三角形DEF

设AE=3K,EC=4K,则AC=7k,在等腰RT三角形ADC中,解得AD,根据三角形AME相似于三角形DEC,求的比值

如图,ABCD为正方形,DE//AC,AC=AE. 求证:CE=CF

证明:过D,E点分别作DH,EG垂直于AC,垂足是H,G∵ABCD是正方形,∴DH=1/2AC,又AC=AE∴DH=1/2AE∵DE//AC,所以DH=EG,即EG=1/2AE∴∠EAG=30.(在直

如图,角CAE=15°,AE=CE,四边形ABCD为正方形,求证:三角形BED为等边三角形.证明:∵正方形ABCD,∴A

∵角CAE=15°AE=CE∴△CEA为等腰三角形∴CE=EA在△AEB和△CED中,AE=CEAB=CD角BAE=角ECD=90°-15°=75°∴△BAE≌△ECD∴BE=DE过E作GF⊥AC交A

如图,四边形ABCD是正方形,E是正方形ABCD内一点,F是正方形ABCD外一点,连结BE,CE,

如图,四边形ABCD是正方形,E是正方形ABCD内一点,F是正方形ABCD外一点,连结BE、CE、DE、BF、CF、EF.(1)若∠EDC=∠FBC,ED=FB,试判断△ECF的形状,并说明理由.(2

如图.在正方形ABCD中,CE⊥DF,若CE=10cm,求DF的长.

∵四边形ABCD是正方形∴BC=DC,∠BCD=90∴∠BCE+∠ECD=90∵CE⊥DF∴∠CDF+∠ECD=90∴∠BCE=∠CDF∴三角形BCE≌三角形CDE(ASA)∴DF=CE=10cm

在如图正方形ABCD中,CE⊥DF 求证CE=DF

证明:∵正方形ABCD∴BC=CD,∠B=∠BCD=90∴∠BCE+∠BEC=90∵CE⊥DF∴∠BCE+∠DFC=90∴∠BEC=∠DFC∴△BCE≌△CDF(AAS)∴CE=DF数学辅导团解答了你

初一数学:如图,大正方形ABCD中有2个小正方形(正方形BEFG和正方形MNPQ),且这2个小正方形.

三角形ABC=三角形ADC,三角形AEF=三角形FGC..三角形AMQ=三角形CNP再问:就是不知道能不能不写过程,算了,反正也不想写==

如图 在正方形ABCD CE垂直于DF 求证:CE=DF

证明:∵CE⊥DF∴∠CDF+∠DFC=90°又∠ECB+∠DFC=90°∴∠CDF=∠ECB又∵正方形ABCD∴CD=CB∠DCF=∠CBE=Rt∠∴△DCF≌△CBE(ASA)∴CE=DF证毕

如图,正方形ABCD和正方形BEFG,连AG,CE,证明三角形AGD和三角形DEC的面积相当~`

证明:我按一种图形来解,其实所有情况都不例外的,详见附图过G作GM⊥BC,过E作AB的垂线,交AB的延长线于点N,∵∠GBM=∠NBM-∠GBN=90°-∠GBN=∠GBE-∠GBN=∠NBE又∵∠G

已知:如图,正方形ABCD中,CE=CF,求证:BH垂直于DE

证明:∵四边形ABCD是正方形∴BC=CD,∠BCF=∠DCE=90°∵CE=CF∴△BCF≌△DCE∴∠CBF=∠CDE∵∠CDE+∠E=90°∴∠CBF+∠E=90°∴∠BHE=90°∴BH⊥DE

如图正方形ABCD中,AB=20,CE=4,求图中阴影部分面积

F是两对角线的交点吗?再问:是的再答:△DFC面积为20²/4=100△CEF面积为(1/2)×4×10=20所求阴影部分面积为100-20=80再问:10哪来的?再答:10是F点到BC边的