如图菱形ABCD的边长为6,有一内角为60度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:42:58
如图,已知菱形ABCD的边长为2cm,角BAD=120度,对角线AC,BD相交于点O,试求这个菱形的面积

你可以求三角形ABD的面积在乘以2根据边长为2,角BAD=120度所以AO=1,BO=根号3三角形ABD的面积=根号3所以菱形面积为2根号3

如图,在边长为M的菱形ABCD中,角DAB=60度,E是AD上不同于

设CF=X ,AE=M-X三角形BEF的面积(f(x))=菱形的面积-三角形AEB-三角形bfc-三角形EDF三角形AEB=4分之根号3乘(m-x)的平方BFC=4分之根号3乘mxEDF=4

如图,菱形ABCD的边长是4,有一个内角是60度,取两条对角线所在的直线为坐标轴,对角线的交点为坐标原点,

以它的长对角线为X轴,短的为Y轴,4点A,B,C,D.分别在左,下,右,上根据60度,判断三角形ABD和三角形BCD为等边三角形所以OB=OD=2,再用勾股定理推出AO=CO=2倍根号3所以A,B,C

如图边长为1的菱形abcd中角dab等六十度,连接对角线aceac为边作第二个菱形ac

AC=√3AB第n个菱形边长为(√3)^(n-1)再答:第一个菱形的对角线长=1×COS30°×2=根号3是第二个菱形的边长第二个菱形的对角线长=根号3×COS30°×2=(根号3)^2是第三个菱形的

如图菱形ABCD的边长为4cm,且角ABC=120°,点E是BC中点

连接AE,交BD于点P,再连接CP,AC,证明出三角形APD全等三角形CPD,就能得出AP=CP,所以PC+PE=AE,求AE的长就可以了.补充,因为AE是在一条直线上的,根据两点之间线段最短,所以A

已知:如图,菱形ABcD的边长为13cm,对角线BD的长为10cm.求:(1)对角线Ac的长;(2)菱形ABcD的面积.

1,由于四边形ABCD是菱形,所以对角线垂直平分AC,所以∠AOD=90°,BO=DO=5cm,AO=CO..由题意,在Rt△AOD中,AD=13cm,OD=5cm,由勾股定理得AO=12cm,所以对

如图,菱形ABCD中,顶点A到边BC,CD的距离AE,AF都为5,EF=6,那么菱形ABCD的边长为______.

连接AC、BD,AC交EF于点H,∵菱形ABCD,∴AC⊥BD,AD=AB=BC=CD,∵AE=AF,由勾股定理得:DF=BE,∴CF=CE,∴EF∥BD,∴AC⊥EF,∵AE=AF,∴EH=HF=3

(1)已知:如图菱形ABCD的边长为2,BD=2,

(1)由已知AB=BC=CD=DA=BD=2,得△ABD和△CBD是等边三角形∴∠ADB=∠C=60°∵AE+DE=AD=2,又∵AE+CF=2∴DE=CF在△DEB和△CFB中:DE=CF∠ADB=

如图,菱形ABCD的边长为4,∠BAD=π/3,O为线段AC的中点,将菱形ABCD沿对角线AC折起得到三棱锥

∵OC=OA,MC=MB∴OM=(1/2)AB=2又OD=(1/2)BD=2,DM=2√2∴OM^2+OD^2=DM^2∴∠MOD=90°即OM⊥OD∵ABCD是菱形∴OD⊥AC∴OD⊥平面ABC又O

如图,边长为2的菱形ABCD中

DE+DF=2连接AC、BD因为在菱形ABCD中,角ABD=角EBF=60度,角BAE=角BDF=60度,AB=DB所以角ABD-角EBD=角EBF-角EBD即:角ABE=角DBF所以在三角形ABE和

如图边长为4的菱形ABCD的对角线交于平面直角坐标系的原点

(1)先求出A~D坐标;A(-1,√3),AD=4,故D(3,√3)C与A、B与D分别关于原点对称,故B(-3,-√3),C(1,-√3)(2)沿O点顺时针转180度后,仍与原菱形重合,只不过对角顶点

如图,菱形花坛ABCD的边长为6cm

选A连接棱形的那条较短的对角线,易证较短的那条对角线的长度等于棱形的边长.可以看出正六边形的边长是棱形边长的三分之一.可以求得图形的边长为20cm.图形的面积:可以先求出图形一半的面积.在棱形较短的对

如图:菱形ABCD的边长为2,∠BAD=120°,对角线AC、BD相交于O,求菱形ABCD的面积.

在菱形ABCD中,∠BAO=12∠BAD=12×120°=60°(1分)又在△ABC中,AB=BC,∴∠BCA=∠BAC=60°,∠ABC=180°-∠BCA-∠BAC=60°,∴△ABC为等边三角形

如图,等边三角形CEF的边长与菱形ABCD的边长相等,求角B度数

(1)∵CF=CD∴∠CFD=∠D同理∠CEB=∠B又∠D=∠B(四边形ABCD为菱形)∴∠CFD=∠CEB∵△CFE为正三角形,∠CFD+∠CFE+∠AFE=∠CEB+∠CEF+∠AEF+180度∴

如图,菱形 ABCD的边长为2,高AE平分BC.求:(1)菱形ABCD的面积;(2)两对角线的长

(1)AE=根号3菱形ABCD的面积=1/2*2*根号3*2=2根号3(2)在等边三角形ABC中AC=AB=2O为AC和BD的交点,在直角三角形ABO中BD=2根号3再问:谢谢老师!第(2)小题麻烦解

如图;边长为根号3的菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形

根据已知和菱形的性质可分别求得AC,AC1,AC2的长,从而可发现规律根据规律不难求得第n个菱形的边长.因为∠DAB=60°,且菱形的对角线互相垂直平分,且每一条对角线平分一组对角,根据勾股定理可得A

如图,四边形ABCD是菱形,边长为2cm,角BAD=60度,求菱形ABCD的两条对角线的长度以及它的面积.

BD等于二,AC等于二倍根号三再答:面积等于二倍根号三再问:能写完整的过程吗再答:小等再问:嗯再答:可以呀再答:再答:记得加单位再答:这是初一还是初二?再问:初二再答:好吧,再答:好好学习吧,小妹妹

如图,已知菱形abcd的边长为4,将菱形的一角沿ef折叠,点a落在m,点m在菱形外,则图中阴影部分

无论怎么折,阴影部分的周长还是菱形的周长=4*4=16再答:很高兴为您解答!有不明白的可以追问!如果您认可我的回答。请点击下面的【选为满意回答】按钮,谢谢!

如图,四边形ABCD是边长13cm的菱形,其中对角线AC长为10CM.(1)对角线BD的长度;(2)菱形ABCD的面积.

½bd=√﹙ab²-¼ac²﹚=√﹙13²-5²﹚=12㎝bd=24㎝面积=ac×bd÷2=10×12÷2=60㎝²

如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=10,DF=4,则菱形ABCD的边长为(  )

如图:连接OG,∵BD=10,DF=4∴⊙O的半径r=OD+DF=12BD+DF=12×10+4=9∴OG=9在Rt△GOD与Rt△ADO中,OD=OD,AO=GD,∠AOD=∠GDO=90°∴△AO