对角线互相垂直的四边形面积等于两条对角线乘积的一半

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:53:01
p:对角线互相垂直的四边形是菱形 q:对角线互相平分的四边形是菱形

不矛盾.P且Q的真假是两个单独名题在且的法则下判断,而不是把PQ两个命题组合成一个整体来判断.故P且Q假.

证明对角线互相垂直的四边形的面积等于对角线乘积的一半

证明:设该四边形为ABCD,AC与BD为互相垂直的对角线,且AC与BD的交点为O.因为AC*BD=(AO+CO)BD=AO*BD+CO*BD=2*[(AO*BD)/2+(CO*BD)/2]又因为三角形

对角线互相垂直平分的四边形是不是菱形

可以!用对角线垂直平分求出四边形内部的四个三角形全等,则四边连等,所以那个四边形是菱形.并且正方形就是菱形,因为把菱形旋转45度所得到的图形就是正方形

对角线互相垂直且平分的四边形是菱形吗?

是的!垂直平分!再问:对角线互相垂直且平分的"四边形"是菱形吗?注意是四边形,不是平行四边形!再答:是的!那是四个相等的三角形组成的!平行四边形是平分,没有垂直的效果!

证明对角线互相垂直平分的四边形是菱形.

勾股定理知,被划分的四个三角形斜边相等,证毕

菱形是对角线互相垂直平分的四边形逆命题是什么

对角线互相垂直平分的四边形是菱形这个逆定理是成立的,因为由对角线互相垂直平分可以证明由对角线分割开的四个小三角形全等,这样由内错角定理可证对边平行,从而可证其是平等四边形,由判定定理1可证其是菱形.

两条对角线互相垂直平分的四边形是(  )

因为四边形的对角线互相平分,所以四边形是平行四边形,因为四边形的对角线互相垂直,所以平行四边形是菱形.故选B.

两条对角线互相垂直平分的四边形是()

给你解释一下吧当然选A了棱形包括正方形,正方形是特殊的棱形.选B的只能在四边形有一个内角是90°的时候才是正方形.而题目问的是一般情况,而不是特殊情况,只能选A

对角线互相垂直平分的四边形是( )

对角线互相垂直平分的四边形是(D)很高兴为您解答,【数学之美】团队为您答题.请点击下面的【选为满意回答】按钮,

对角线互相垂直平分的四边形是:

是菱形,其中正方形是特殊的菱形所以选B

对角线互相垂直平分的四边形是平行四边形

对角线互相平分的是平行四边形,互相垂直且平分的是菱形

空间四边形对角线互相垂直,连接四边形各边中点,所得四边形的形状是什么?

矩形连接三角形两条边中点的那个线必定平行于第三条边,这个书上有定理所以就等于是新四边形的四条边对边分别平行,又因为空间对角线互相垂直的,所以新四边形的邻边垂直,就是矩形没有具体的图,我只能这样说,不知

求证:任何四边形,只要对角线互相垂直,其面积就等于对角线乘积的一半!

证明:设四边形为ABCD,AC⊥BD于点O则S四边形ABCD=S△ABC+S△ADC∴S四边形ABCD=1/2AC*BO+1/2AC*DO=1/2AC(BO+DO)=1/2AC*BD即其面积等于对角线

圆内接四边形对角线互相垂直,求证:(1)一组对边的平方和等于另一组对边的平方和

如图 (1)一组对边的平方和等于另一组对边的平方和AB²=AM²+BM²,CD²=CM²+DM²,∴AB²+CD

如何推导对角线互相垂直的四边形面积等于对角线乘积的一半

证明:四边形ABCD对角线AC⊥BD,AC和BD相交于点OS四边形=S△ADB+S△CDB=BD×AO÷2+BD×CO÷2=BD×(AO+CO)÷2=BD×AC÷2=对角线乘积的一半命题得证

对角线互相垂直的不是等腰梯形的面积是否等于对角线乘积的一半

对的,你可以将梯形的面积等同于四个直角三角形的面积和,再化化式子就会发现了