已知f(x)=根号ax² 2ax 1对于任何的X恒成立,求a的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 12:21:25
(1)a=0时,被开方数为4,满足(2)a≠0时,∵对任意的x恒成立∴a>0且△=a^2-16a
分析:极值点导数为零,但是导数为零的点不一定是极值点;如果1/2左右两侧导函数值都为负,即都单调递减,那么它不是极值点一般判定极值点还是按照课本上列表进行判定,只有两侧单调性相反的才是极值点,否则不是
值域为R,即ax²-ax+1可取区间(0,+∞)上的任意值.若a=0,则ax²-ax+1变为1,f(x)=lg1=0,不满足题意,因此a≠0对于函数f(x)=ax²-ax
函数f(x)的图像与y=x的图像交点x=√(ax+2)x^2-ax-2=0x1=(a+√(a^2+8))/2>0x2=(a-√(a^2+8))/2x=f(x)>=0onlyx1istherootoft
1、f'(x)=2x+a-1/x
解法一:∵函数f(x)=3x+ax+2在区间(-2,+∞)上单调递减,∴f′(x)=6−a(x+2)2 在区间(-2,+∞)上小于零,∴a>6,故答案为:(6,+∞).解法二:设x2>x1>
2.(1)当t>1时f(x)最小值为tlnt当0
a=0时定义域是Ra不等於0时1-ax>=0
1)f'(x)=-2x-a-1/x令f'(x)-2x-1/x令g(x)=-2x-1/x,g'(x)=-2+1/x^2,由g'(x)>0得,0-2√22)f'(x)=-2x-a-1/x(x>0)令-2x
/>1)f'(x)=2x+a-1/xf"(x)=2+1/x^2>0函数存在最小值.最小值在x=1/2的右边:f(x)在(0,1/2)上是减函数f'(x)=2x+a-1/x=0,x>=1/2a=1/x-
(1)a=1f(x)=根号下(x^2+1)-x=1/[根号下(x^2+1)+x]分母单调增所以f(x)单调减(2)学过求导没用求导比较方便f'(x)=x/根号下(x^2+1)-a=1/根号下(1/x^
定义域为一切实数,所以x²+ax+1>0恒成立所以△<0△=a²-4<0-2<a<2
f(x)=2[sin(ax+b)cosπ/6-cos(ax+b)sinπ/6]=2sin(ax+b-π/6)1、两相邻对称轴间距离是T/2=π/2T=π所以T=2π/a=πa=2过(0,1)1=2si
(1)f(x)=X²-2ax+5=(x-a)^2+(5-a²)f(a)是最小值假设a>=1,则f(a)=1f(1)=a(5-a²)=1(1-a)^2+(5-a²
证明:设x1>x2≥0,则f(x1)-f(x2)=√(x1^2+1)-ax1-√(x^2+1)+ax2=(x1^2-x2^2)/[√(x1^12+1)+√(x2^2+1)]-a(x1-x2)=(x1-
由题设[f(x1)-f(x2)]/(x1-x2)<0.易知,在R上,函数f(x)递减,一方面,当x<0时,f(x)=a^x递减,∴0<a<1,另一方面,当x≥0时,函数f(x)=(a-3)x+4a也递
f(x)=√(2-ax)在区间[0,1]上是减函数∴a>0又∵2-ax>0∴x1解得a
1.已知函数f(x)=x^2+ax+3,当x∈R时,f(x)≥a恒成立,f(x)=x^2+ax+3=(x+a/2)^2-a^2/4+3,因为(x+a/2)^2≥0,所以f(x)≥-a^2/4+3;已知