已知n阶方阵A满足矩阵方程A*-3A-3E=0,证明A可逆,并求1 A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 13:57:25
设方阵满足A^2-4A+E=0,证明A及4A+E均可逆,并求A及4A+E的逆矩阵因为A^2-4A+E=0所以A(A-4E)=-E所以A可逆,且A逆=-
提示:幂零阵的所有特征值都是零(这是充要条件)
汗啊,是平方啊…………我以为是伴随呢…………A²-A+E=0E=A-A²=A(E-A)(E-A)A=A-A²=E所以A可逆,逆矩阵是E-A
A^2-3A=2EA*(A-3E)/2=E所以A可逆逆矩阵为A^(-1)=(A-3E)/2
(A+E)^3=A^3+3A^2+3A+E=0A(A^2+3A+3E)=-E所以A可逆,A^-1=-(A^2+3A+3E)
(E+3A)(E-3A)=E-9A^2=E
A^2=4AA(A-4I)=0A=0orA-4I=0ifA=0A-4I=-4I(A-4I)^(-1)=(-1/4)IifA-4I=0A-5I=-Ithen(A-5I)^(-1)=-IieA-5I可逆
A^3+A^2-2A=0A^2(A+I)-2A-2I=-2I(A^2-2I)(A+I)=-2I-1/2(A^2-2I)(A+I)=I所以A+I可逆逆阵是-1/2(A^2-2I)
2A^2+9A+3E=02A^2+9A+4E=E(A+4E)(2A+E)=E所以A+4E可逆,逆矩阵为(2A+E)
A²-3A-E=0A^2-3A=EA(A-3E)=E因此A可逆,且其逆矩阵为A-3E
1这个A不一定是可逆的.如果不可逆,A^(-1)不存在2跟第一个一样的错误
答案是≤假设A=O,B=O显然满足题意AB=O此时R(A)+R(B)=0假设A=E,B=O显然也满足题意AB=O此时R(A)+R(B)=n综上R(A)+R(B)≤n
证∵(A-E)(B-E)=E又:det(A-E)*det(B-E)=detE=1∴det(A-E)≠0∴A-E是可逆阵
(A-E)²=2(A+E)²A²-2A+E=2A²+4A+2E整理得:A²+6A=-EA(A+6E)=-E所以A[-(A+6E)]=E故A^-1=-(
因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).
A^2-3A+E=03A-A^2=E(3E-A)A==EA^(-1)=3E-A
n阶方阵的行列式丨A丨≠0说明矩阵A各行、各列线性无关,A的秩等于n.都是A具有的“性质”,看你挑一个了.再问:那AX=B一定有唯一解了?再答:那就不一定了!还需要一个条件:B的秩等于A的秩。矩阵方程
A*(A-2E)/(-3)=E,故A的逆为-1/3*(A-2E)
因为A^2-2A+E=0所以A(A-2E)=-E所以A可逆,且A^-1=2E-A.