已知x,y属于0到正无穷,且x分之1 y分之9=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:57:24
因为f(x+y)=f(x)+f(y),所以f(x+y)-f(x)=f(y),所以f(3x)-f(x-2)=f(3x-x+2)>3f(2x+2)>3f(2x-2)+f(2)+f(2)>3f(2x-2)+
f(x)=x^2+2x+a/x>0x^2+2x+a>0y=x^2+2x+a,x属于1到正无穷为增函数满足x=1,y>01+2*1+a>0a>-3
原式两边同时乘以xy(x+y)得a^2y(x+y)+b^2x(x+y)>=(a+b)^2xy化简得:(ay)^2+(bx)^2>=2abxy即(ay-bx)^2>=0上述不等式即证当ay=bx时,等号
图象关于y轴对称则3m-5是偶数x>0递减所以指数是负数3m-5
1.f(1)=f(1)+f(1)所以f(1)=02.f(4)=f(2)+f(2)=2所以f(x)+f(x-3)≤f(4)f(x^2-3x)≤f(4)又因为f(x)是增函数所以x^2-3x≤4(x-4)
Y=X^2+4x+a/x1、当a=1,则有Y=X^2+4x+/x当X1=1时,Y1=6当X2=2时,Y2=10.5>Y1故为增函数2、X^2+4x+a/X>0X^3+4x^2>-a因X大于或等于1,故
x+y=xy-1≤1/4*(x+y)^2-1,因为x、y均为正,所以x+y为正!解出上面的不等式,得到a≥2+2√2.此即为x+y的最小值.当x=y时,取得!此时有:x^2-2x=1解之得:x=y=1
已知函数f(x)是定义域在(负无穷到正无穷)上的偶函数,当x属于(负无穷到0)时,f(x)=x-x的4次方,当x属于(0到正无穷)时,求f(x)的表达式.f(x)是定义域在(负无穷到正无穷)上的偶函数
F(x)在区间负无穷到0上单调递增证明:令x1<x2,而函数y=f(x)是奇函数,在区间0到正无穷上是减函数,f(x)小于0,则在R上都是减函数,f(x1)>f(x2),且当x<0时,f(x)>0(奇
因为a+b≤0∴a≤-b,b≤-a;又f(x)在(-∞,+∞)上是减函数∴f(a)≥f(-b)f(b)≥f(-a)两式相加:f(a)+f(b)≥f(-b)+f(-a)∴选最后一个.
f(x)=(x^2+2x+a)/x>0,即x^2+2x+a>0a>-x^2-2x=-(x+1)^2+1a>(-x^2-2x)max=-3
a=1的时候,图像为平分第一象限的直线a>1的时候,图像上翘,在该直线上方0
f(xy)=f(x)+f(y)看到这个,马上想到对数函数而且当底数大于1时,确有x>1,loga(x)>0所以f(x)=lgx
已知函数f(x)=(ax^2+2x+1)/xx属于1到正无穷若对任意实数x属于1到正无穷时f(x)大于0恒成立求a的取值范围f(x)=(ax^2+2x+1)/xf(x)>0即:(ax^2+2x+1)/
a垂直于b,则(4-x)y+(x+5)=0xy=4y+x+5=≥2√4xy+5(x=4y取等号)①x=4y时xy取最小值代入①,4y2=4y+4y+5,且y≥0y=5/2
设t=xy则:x=t/yxy=x+y+3t=t/y+y+3y^2+(3-t)y+t=0△=(3-t)^2-4t=9-10t+t^2=(t-1)(t-9)≥0t≥9,或,t≤1因为x,y大于0,所以,y
幂函数的图像关于y轴对称,说明幂指数p-3是偶数.幂函数在(0,+∞)上是减函数,说明它的幂指数是负数.所以p-3是负偶数.而p∈N+,所以p只能是1(a+1)^(1/3)
-3<f(2x+1)≤0f(-2)<f(2x+1)≤f(0),在[0到正无穷]上为增函数,得在负无穷到正无穷上为增函数,所以,-2<2x+1≤0-3
设x1,x2∈(0,∞),且x1<x2,则-∞<-x2<-x1<0∵f(x)在区间(0,∞)上单调递增,∴f(x1)-f(x2)<0又∵f(x)为奇函数,∴f(-x)=-f(x)∴f(-x1)-f(-