已知三角形abc以abac为边向形外分别作正方形abde.acfg

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:43:16
已知三角形ABC是一个等腰直角三角形,直角边的长度是米,现在以直角顶点C为圆心,把三角形ABC顺时针旋转90度,

你可以把这个延伸到坐标上去,设C在O上,A(-m,m)B(m,m)那么可以知道旋转90度就是一个以O为圆心,m为半径的半圆因为你没写出长度是多少米,所以我以m来代替了应该可以看懂吧^_^PS:小学六年

已知在三角形ABC中,角ACB等于90度,以三角形ACB的各边为边在三角形ABC外作三个等边三角形,则三个等边...

设直角三角形ABC的三边分别为a、b、c,且c为斜边边长,三个等边三角形的面积为Sa、Sb、Sc.则Sa=a方*sin60度/2、Sb=b方*sin60度/2、Sc=c方*sin60度/2,又因a方+

如图在Pt三角形abc中,角abc等于九十度分别以abac为边向三角形abc外作正方形ABDE 和

延长AH于I,使IG平行于BC∵IG平行于BC,∠ABC=90°∴∠GIA=90°∵∠IAG+∠BAC=90°,∠BAC+∠ACB=90°∴∠IAG=∠ACB在△ABC与△GIA中∵AC=AG,∠GI

如图,已知三角形ABC中,角ABC=90度,以三角形ABC的各边为长边,在三角形ABC外作长方形,使长方形的宽为长的一半

依题意:S1=AC×AC/2=AC²/2S2=BC×BC/2=BC²/2S3=AB×AB/2=AB²/2则S1+S2=(AC²+BC²)/2因∠ACB

已知:如图所示,以已知三角形ABC的两边AB、AC为边向外做等边三角形三角形ABD和三角形ACE,DC、BE相交于点O

∵△ABD和△ACE是等边三角形∴AD=AB,AC=AE∠DAB=∠CAE=60°则∠DAC=∠DAB+∠BAC=60°+∠BAC=∠CAE+∠BAC=∠BAE在△DAC和△BAE中AD=AB,∠DA

已知三角形ABC,分别以AB,AC为边作三角形ABD和三角形ACE,AD=AB,AC=AE,角DAB=角CAE,

易证三角形ACD全等于三角形AFB,AF=AG(对应中线相等)可看作三角形ACD绕点A逆时针旋转角DAB+角BAC后得到三角形AFB,因此角FAG=角DAB+角BAC(对应线段之间的夹角等于旋转角)所

如图分别以ABAC为腰在三角形ABC的形外作两个等腰直角三角形三角形ABD和ACE

BE=DC且BE⊥DC∵∠BAD=∠CAE=90°∴∠BAD+∠BAC=∠CAE+∠BAC即∠DAC=∠BAE又∵AD=ABAC=AE∴△DAC≌△BAE∴BE=CD∠DCA=∠BEA∵∠CAE=90

如图一已知三角形abc以abac为边向三角形abc外做等边三角形abd和等边三角形ace

1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹);(2)如图2,已知△ABC,

已知三角形ABC是一个等腰直角三角形,直角边的长度是1米,现在以直角顶点C为圆心,把三角形ABC顺时针旋转90度

取斜边AB中点D,连接CD(图很好画的),把三角形ABC顺时针旋转90度后CD扫过的面积是四分之一半径为√2/2的圆面积.同时整个图形扫过的面积应是以C为圆心,1为半径的半个圆的面积.那么AB扫过的面

已知三角形ABC,分别以AB、AC为边向形外作等边△ABF、△ACE,再以AF、AE为边作平行四边形AEDF,求证三角形

在平行四边形AEDF中,有:AE=FD;所以,AC=AE=FD.若∠ABC>60°,则有:∠ABC=60°+∠ABD=∠FBD;若∠ABC<60°,则有:∠ABC=60°-∠ABD=∠FBD;所以,∠

已知三角形ABC 分别以AB、AC为边向外作三角形ABD和三角形ACE,且AD=AB,AC=AE,∠DAB=∠CAE.

1;∠DAC=∠DAB+∠BAC∠BAE=∠CAE+∠BAC已知,∠DAB=∠CAE,所以;∠DAC等于∠BAE又已知AD=ABAC=AE,所以此两个三角形相同第二题怎么看都觉得∠EOC不可能等于60

已知三角形ABC中,角A等于九十度,AB=AC,D为BC中点,E,F分别是ABAC上的点BE=AF求三角形BDE与三角形

S△BDE与△CDF通过现有条件是没有特定关系的,加上BE=CF,才可与判定△BDE=△CDF;如果是从面积角度看,△BDE+△CDF的面积等于△ABC的一半;此外可以判定几组全等三角形△BDE=△A

如图三角形ABC中,三角形ABC为锐角三角形边ABAC的垂直平分线交与点O连接OBOC求证∠BOC=2∠A

证明:连接并延长AO交BC于点D,记∠BAO为∠1,∠CAO为∠2,∠BOD为∠3,∠COD为∠4则:∠3=∠1+∠ABO∠4=∠2+∠CAO∵AO=BO=CO∴∠1=∠ABO∠2=∠CAO∴∠3=∠

已知:如图,D为三角形ABC内一点,连结AD.DB ,以BC为边,在三角形的形外作三角形BCE .使角1=角2

证明:因为∠1=∠2,∠3=∠4所以△ABD∽△CBE所以AB/CB=BD/BE所以AB/BD=BC/BE因为∠1=∠2所以∠1+∠CBD=∠2+∠CBD即∠ABC=∠DBE所以△ABC∽△DBE所以

已知三角形ABC 分别以AB,BC,CA为边向外做等边三角形ABD,等边三角形BCE,等边三角形ACF.问当三角形ABC

过A作AM‖FC交BC于M,连结DM、EM.因为∠ACB=60°,∠CAF=60°,所以∠ACB=∠CAF.所以AF‖MC.所以四边形AMCF是平行四边形.又因为FA=FC,所以□AMCF是菱形.所以

已知三角形ABC中,角BAC=45度,以AB,AC为边在三角形ABC外作等腰三角形ABD和三角形ACE,AB=AD,AC

过点A作AM⊥BE于M,AN⊥CD于N∵∠BAD=60,AB=AD∴等边△ABD∴∠ABD=∠ADB=60∵∠BAE=∠BAC+∠CAE,∠DAC=∠BAC+∠BAD,∠BAD=∠CAE∴∠BAE=∠

以abc为边的三角形共有几个

解题思路:解决这个问题的关键之处在于认真审题,仔细观察和分析题干中的已知条件和所给的数量关系.根据三角形三边关系和一元一次不等式的应用,据此求解。解题过程:解:∵a+b+c=13∴a+b

已知D为三角形ABC内一点,连接ED、AD,以BC为边在三角形ABC外作角CBE=角ABD,角BCE=角BAD.

∵∠CBE=∠ABD,∠BCE=∠BAD    ∴△CBE∽△ABD    ∴BC/AB=BE/BD,AB×BE=BC×

已知三角形ABC中,分别以AB,AC为边向三角形ABC 的形外作正方形ABDE和正方形ACFG,连接DF,过DF的中点M

如图.设AB=a(向量), BD=a', AC=b, CF=b'.BC=b-a.设BN=tBC=t(b-a).FD=FC+CB+BD=-b'+a-

已知三角形ABC中,分别以AB.AC为边向三角形ABC 的形外作正方形ABDE和正方形ACFG,連接DF,

1)相等的线段还有BG=CE证明:∵四边形ABDE和ACFG都是正方形∴AB=AE,AC=AG,∠BAE=∠CAG=90°∴∠CAE=∠BAG∴△ABG≌△AEC∴BG=CE(2)△ABG可以有△AE