已知二次函数y=x²-2x-3,若线段ab

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:02:57
已知二次函数y=-2x^2+(m+3)x-m+1

(1)线段AB(A、B为抛物线与x轴的两交点)的长度为√△/│a│=√(b^-4ac)/2=√(m^2-2m+17)=√[(m-1)^2+4],当m=1时最短,最短长度为2.(2)当m=1时,抛物线为

有关二次函数已知关于x的二次函数y= x²+2ax-3b+1和y= -x²+(a -3)x+b&su

因为两个函数图像都过M、N点由韦达定理可知X1+X2=-2a=a-3X1*X2=1-3b=1-b²所以a=1b=0或3检验:当b=0时y=x²+2ax-3b+1=x²+2

已知二次函数y=2x²+(2m-3)x-m-1

(1)△=(2m-3)^2+8(m+1)=(2m-1)^2+16>0,此二次函数图像与x轴必有两个交点(2)x12=(3-2m±√△)/4,x1>3或x2m

已知二次函数y=2x²+x-3

①该函数图象与x轴有几个交点?并求出交点坐标;有两个交点2x²+x-3=0(2x+3)(x-1)=0x=-3/2或x=1交点坐标是(-3/2,0),(1,0)②该说明一元二次方程2x

已知二次函数y=x^2-kx+k-5.

(1)y=x^2-kx+k-5.∴△=(-k)²-4(k-5)=k²-4k+20=(k-2)²+16>0;∴不论K为何实数,此函数图像与x轴有两个交点;(2)若此二次函数

已知二次函数y=mx2+4x+2.

(1)由条件可知:△=16-8m=0,m=2;(2)假设存在符合条件的m的值,设函数图象与x轴的两个交点横坐标是x1,x2.∴x1+x2=-4m,x1x2=2m,∴(x1-x2)2=(x1+x2)2-

已知二次函数y=-1/2x^2x+3/2

y=-1/2x^2+x+3/2=-1/2(x-1)^2+21.-13或X

已知二次函数y=-1/2x^2+x+3/2,

1、y=-1/2x^2+x+3/2=-1/2(x-1)^2+22、顶点位于(1,2),对称轴x=13、(1,2)(0,3/2),(2,3/2)(-1,0),(3,0)(-2,-5/2),(4,-5/2

已知二次函数y=x²-2x-3

(1)y=x²-2x-3=(x-1)²-4对称轴为x=1,顶点坐标(1,-4)(-∞,1】递减区间;【1,+∞)递增区间.(2)自己作(2)x²-2x-3>0(x+1)(

已知二次函数y=x平方-4x+2

解一:原函数可变形为y=(x-2)^2-2,因此不难得出二次曲线的对称轴为x=2,顶点为〔2,-2)二:都知道y=ax^2+bx+c=0当a>0时图像开口向上〔反之朝下〕,因此y=x^2-2x+2图像

已知二次函数y=-x²+2x+3

1.4到负无穷2.0到负无穷3.0到44.若a大于1,则-a^2-2a+3到-a^2+2a+3若a小于-1,则-a^2+2a+3到-a^2-2a+3若1>a>-1则最大为4若a有小于0,最小为-a^2

已知,二次函数y=-x^2+2x+3 求y的取值范围

已知,二次函数y=-x^2+2x+3=-x^2+2x-1+4=-(x-1)^2+4

已知二次函数y=x²+kx+k-2

1、△=k^2-4(k-2)=(k-2)^2+4>0所以与x轴必有2个不同交点.2、代入(1,0)得1+k+k-2=0解得k=1/2所以y=x^2+(1/2)x-(3/2)根据韦达定理,1+x=-1/

已知二次函数y=0.5x^2-x-4

根据二次函数顶点坐标的公式可得(1,-4.5),对称轴是x=1,图像与Y轴的坐标是(0,-4),与x轴的坐标是(-4.5,0)图像略

已知二次函数y=x²+2x+c,当c=-3时,

(1)y=(x+3)(x-1)x=-3,x=1(2)y=(x+1)2+c-1分三种:1是最低点c=12是-2带进去小于0,1带进去大于03是-2带进去大于0,1带进去小于0最后在看一下等于0的情况

已知二次函数y=12x2-3x+1

(1)∵y=12x2-3x+1=12(x2-6x)+1=12(x-3)2-72,∴把它的图象向右平移1个单位,向下平移3个单位得到的函数的解析式为:y=12(x-3-1)2-72-3,即y=12(x-

已知二次函数y=x²-3x+5

y=x²-3x+5=(x-3/2)+11/4(1)当自变量x>3/2内取值时,y随x增大而增大?在x