已知关于x的方程x² mx 2n=0的两个根是1和-3求m和n的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:03:59
43x-m=65x-1整理得:x=15(m−1)2,因为m、x为正整数,所以m-1必须是2的倍数,m可以为3、5、7、9…;所以正整数m的最小值为3.
∵x=2是方程3a-x=x2+3的解,∴3a-2=1+3解得:a=2,∴原式=a2-2a+1=22-2×2+1=1.
解题思路:由条件中的两个等量关系可直接求得方程两根,再用代入法或根与系数的关系证明出a=b=c.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("
由方程(1)得x=27a由方程(2)得:x=27−2a21由题意得:27a=27−2a21解得:a=2714,代入解得:x=2728.∴可得:这个解为2728.
x^2-(k+2)x+2k=0△=(k+2)^2-8k=k^2+4k+4-8k=k^2-4k+4=(k-2)^2≥0所以无论k取任何实数值,方程总有实数根另两边长恰是这个方程的两个根则x1+x2=k+
反对上面的,因为M>0所以0和-2舍去这题是讨论的.因为(m-1)x+2m=5且m>0所以0<X<5又因为有整数解所以把0<X<5的数一一列出得1.2.3.4当X=1时,M=2当X=2时M=4/7舍当
由题意(R+r)2-d2
∵12x=-2,∴x=-4.∵方程12x=-2的根比方程5x-2a=0的根大2,∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.可得:x−15-15=0.解得:x=-225.
把x=0代入:(k-2)^2=0k=2
设f(x)=x2+(12-2m)+m2-1,对称轴为x=m-14,△=(12−2m)2-4(m2-1)=174-2m,f(0)=m2-1,f(2)=m2-4m+4=(m-2)2,由题意得:△≥00≤m
(1)3x+a=x-7 2x=-a-7 x=-(a+7)/2 a>-7时x有正数解(2)a-1<x<5a-1<-(a+7)/2<52a-2<-a-73a<-5a<-5/3……………①a+7
证明:(1)∵方程2x2+(m+4)x+m-4=0两个不相等的负实数根,∴设这两个负实数根分别为x1,x2∴△1>0x1+x2<0x1•x2>0即(m+4)2−4×2(m−4)>0−m+42<0m−4
方程移项合并得:925x=a+142,解得:x=25(a+142)9,由x为自然数,得到自然数a的最小值为2.故答案为:2.
是a是关于x的方程x²-x-1=0的一个根a²-a-1=0a-1-1/a=0a-1/a=1a²-a-1=0a³-a²-a=0a³-2a&su
解题思路:根据根与系数关系进行求解解题过程:解:根据根与系数关系可知,-1×a=-10/2∴a=5最终答案:略
解方程2x+12=6x-2得:x=12;因为方程的解互为倒数,所以把x=12的倒数2代入方程x-m2=x+m3,得:2-m2=2+m3,解得:m=-65.故所求m的值为-65.
(1)∵sinx+cosx=a∴a=2sin(x+π4),∴-2≤a≤2(2))∵sinx+cosx=a∴a=2sin(x+π4),设y1=ay2=sin(x+π4),由题意可知y1=ay2=sin(
x/(x-3)=2-m/(3-x)等式两边同时去分母,可得:x=2x-6+m所以x=6-m又该方程有一个正数解所以x=6-m>0,m