已知函数y=2ax 3在(-无穷大,1]上是递减的,求a的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:43:11
已知幂函数y=x^(3m^2-6)(m属于N),在区间(0,正无穷)上是减函数.求函数的解析式

由题意知y=x^(3m^2-6)(m属于N),在区间(0,正无穷)上是减函数.故有3m^2-6

对数函数求范围已知函数y=log2(3x^2-ax+4)在【1,正无穷)上是增函数,求a的取值范围

y=log2(x)在【1,正无穷)上是增函数,所以要使得y=log2(3x^2-ax+4)在该范围也是增函数,则函数y=3x^2-ax+4也需要在该范围是增函数y=3x^2-ax+4的对称轴是:x=a

已知函数f(X)=ax3-3x2+x+b,其中a,b∈R,a≠0,又y=f(x)在x=1处的切线方程为2x+y+1=0,

f'(x)=3ax2-6x+1   …(2分)k=f'(1)=3a-5=-2∴a=1所以f(1)=1-2+1+b=b-1,由P(1,f(1))在直线2x+y+1=0上,故2+b=0∴b=-2

已知函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))出的切线方程为y+2=0 求函数的解析式

已知函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))出的切线方程为y+2=0说明在(1,f(1)),f'(1)=0,且,f(1)=2f'(x)=3ax^2+2bx-3f'(1)=3

已知函数y=ax3-15x2+36x-24在x=3处有极值,则函数的递减区间为(  )

对函数y=ax3-15x2+36x-24求导数,得y'=3ax2-30x+36∵函数y=ax3-15x2+36x-24在x=3处有极值,∴当x=3时,y'=27a-54=0,解之得a=2由此可得函数解

已知函数y=ax3+bx2,当x=1时.有极大值3.1.求a.b的值.2,求函数y的极小值

y=ax^3+bx^2y'=3ax^2+2bx根据已知,可得:x=1,y=3,y'=0.代入a+b=33a+2b=0a=-6,b=9y'=-18x^2+18x=-18x(x-1)x=0时,极小值为0

已知函数y=ax3+3x2-x+1在R上是减函数,求实数a的取值范围

这道题先求原函数的导函数y一撇=3ax2+3x-1这个导函数的函数值指的是原函数的切线斜率.因为原函数在实数范围内都是单调减函数,所以原函数的切线斜率一定小于0,也就是导函数的函数值一定小于0.所以导

已知幂函数y=x^(m^2-2m-3)(m∈N*)的图象关于y轴对称,且在(0,正无穷)上是减函数、

1:y=x^(m^2-2m-3))(m∈N*)的图象关于y轴对称,且在(0,正无穷)上是减函数:所以:y=x^(m^2-2m-3)为偶函数;m^2-2m-3为偶数,且(3-2a);无解;或3-2a>0

已知函数y=x+2/x有如下性质:函数(0,2 1/2] 是减函数,在[21/2 ,正无穷) 上是增函数

y=x+a/x(a>0)在(0,根号a)减,(根号a,正无穷)增,用定义法证明即可;函数f(x)=x+c/x(x大于等于1,小于等于2)的最大值为f(1)=1+c最小值为f(2)=2+c/2再问:具体

已知函数f(x)=ax3+bx2-3x在点(1,f(1))处切线方程为y+2=0

这是一道全国高考题.好象是2004年的.(待查)给你个图片答案吧.

已知函数y=x/x+a在(-2,正无穷)上是增函数,求a的取值范围

y=1-a/(x+a)由y=-a/x左移a单位,上移1单位得到;且在(-2,正无穷)上是增函数所以-a

已知函数y=x的负2次方,则它在(-无穷,0)上是增函数还是减函数?辛苦

递增的.因为已知函数为y=x的平方分之一,x在(—无穷,0)中,x的平方是递减的,所以,x的平方分之一,是递增的.

已知函数f(x)=ax3+3x2-4x(其中实数a小于0)若y=f(x)在(-无穷,1]上为减函数,在[1,2]上为增函

f'(x)=3ax^2+6x-4由已知,在x=1处,f'(1)=0,即 3a+6-4=0,所以 a=-2/3

已知函数y=ax3-15x2+36x-24,x∈[0,4]在x=3处有极值,则函数的最大值是______.

由函数y=ax3-15x2+36x-24,x∈[0,4]得:y/=3ax2-30x+36∵函数在x=3处有极值∴f/(3)=27a-54=0故a=2,函数表达式为y=2x3-15x2+36x-24∴f

已知函数f(x)=ax3+bx+c在点x=2处取得极值c-16.

(Ⅰ)由题f(x)=ax3+bx+c,可得f′(x)=3ax2+b,又函数在点x=2处取得极值c-16∴f′(2)=0f(2)=c−16,即12a+b=08a+2b+c=c−16,化简得12a+b=0

已知函数y=f(x)在(负无穷,正无穷)上是减函数,则y=f(|x+2|)的单调递减区间是

根据y=|x|的图像可以画出y=|x+2|的图像然后我们就知道y=|x+2|在(-&,-2】上单调递减,【-2,+&)上单调递增则:1.x=-2时,y=f(|x+2|)=f(x+2)又根据y=f(x)

已知函数y=f(x)是定义在负无穷到正无穷上的奇函数,且在[0到正无穷]上为增函数

-3<f(2x+1)≤0f(-2)<f(2x+1)≤f(0),在[0到正无穷]上为增函数,得在负无穷到正无穷上为增函数,所以,-2<2x+1≤0-3