已知动圆C过定点(-1,0)且与x=1 直线PA PM PB的斜率成等差

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:37:53
已知动圆过定点F(8,0),且与定直线l:x=-8相切 求动圆圆心的轨迹C的方程

(1)因为C到F的距离等于C到直线L的距离,所以C的轨迹是以F为焦点,L为准线的抛物线,由于p/2=8,2p=32,焦点在x轴正半轴,所以C的轨迹方程为y^2=32x.(2)设A(x1,y1),B(x

已知动圆过定点F(0,2),且与定直线l:y=-2相切.(1)求动圆圆心的轨迹C的方程;(2)若P是轨迹C上的一个动..

1.设圆心(x0,y0)与直线l相切,于(x0,-2).与F连接作中垂线,可解方程为y0=(x0+2)x/2-x0^2.与x=x0交于(x0,-x0^2/2+x0),圆心轨迹方程为y=-x^2/2+x

已知两定点A(-1,2)M(1,0),动圆过定点M,且与直线x=-1相切,求动圆圆心的轨迹方程

因为动圆过定点M,且与直线x=-1相切,所以动圆圆心的轨迹是:以点M(1,0)为焦点,以直线x=-1为准线的抛物线,其方程是:y²=4x再问:怎样确定思路再答:因为动圆过点M,所以圆心到M的

已知动圆过定点F(0,2)且与定直线y=-2相切,(1)求动圆圆心的轨迹C的方程?

(1)设动圆圆心为(x,y),则因为动圆与定直线y=-2相切,其半径必为|y-(-2)|=|y+2|.所以,动圆的方程(以x‘,y’为自变量)为:(x'-x)^2+(y'-y)^2=(y+2)^2而动

已知动圆过定点D(1,0),且与直线l:x=-1相切,求动圆圆心M的轨迹C

是M点坐标(X,Y)(X+1)的平方=(x-1)的平方+y的平方化简的y方=4x

已知动圆过定点(1,0),且与直线x=-1相切.求,(1)动圆的圆心轨迹C的方程;

1、依题意知,圆心C到定点F(1,0)的距离=圆心C到直线x=-1的距离,所以圆心C的轨迹是一条抛物线,定点F(1,0)是该抛物线的焦点,直线x=-1是该抛物线的准线.很容易写出该抛物线的方程,也即圆

已知动圆过定点(1,0),且与直线x=-1相切 1求动圆的圆心轨迹c的方程

圆心C(x,y)到x=-1距离等于R(X-1)^2+Y^2=(X+1)^2Y^2=4XC轨迹Y^2=4X

已知动圆过定点(1,0),且与直线x=-1相切

设C坐标是(x,y)那么有|x+1|=根号[(x-1)^2+y^2]即有x^2+2x+1=x^2-2x+1+y^2即有方程是y^2=4x(2)设直线L方程是y=kx+1,P(x1,y1),Q(x2,y

已知定点F(1,0)和定直线l:x=-1,动圆P过定点F且与定直线l相切,动圆圆心P的轨迹为曲线C.

(1)因为动圆P过定点F(1,0),且与定直线l:x=-1相切,所以由抛物线定义知:圆心P的轨迹是以定点F(1,0)为焦点,定直线l:x=-1为准线的抛物线,所以圆心P的轨迹方程为y2=4x;(2)直

已知动圆过定点(1,0),且与直线X=-1相切,设动圆圆心M的轨迹为C.

1.动圆圆心M的轨迹方程为:y2=4x,∴动点M的轨迹C是以O(0,0)为顶点,以(1,0)为焦点的抛物线2.y=kx+b,A(X1,Y1),B(X2,Y2)ky^2-4y+4b=0y1+y2=4/k

已知动圆M过定点(1,0),且与直线x=-1相切,求动圆M的圆心轨迹C的方程.

设动圆M的圆心坐标为C(x,y).圆心到直线x=-1的距离和到定点(1,0)的距离相等,则可知C点在直线x=-1的右方,所以x-(-1)=x+1>0即得到x+1=根号[(x-1)²+y&su

已知动圆过点定点( 0,)2,且与定直线L:y等于负2相切,(1)求动圆圆心的轨迹的方程,(2)如是轨迹C上的一个动点,

分析:1)设圆心O(x,y),它到定点N(0,2)和到定直线y=-2距离相等,由抛物线定义得其轨迹为抛物线,且P/4=2,焦点在y轴上,于是轨迹方程为8y=x^2.2)设A(x1,y1),B(x2,y

圆方程计算已知动圆过定点(1.0)且与直线X=-1相切,求(1)动圆圆心C的轨迹方程,(2)是否存在直线L使L过点(0,

(1)设C(x,y),由已知√[(x-1)^2+y^2]=|x+1|平方整理得C的轨迹方程为y^2=4x(2)当L斜率不存在时,与轨迹只有1个交点当L斜率存在时设L为y=kx+1与轨迹方程联立得k^2

已知动圆过定点(1,0),且与直线x=-1相切,

(1)设圆心坐标为(x0,y0)则它到直线x=-1与点(1,0)距离相等可列出方程(x0+1)^2=(x0-1)^2+y0^2=>4x0=y0^2则轨迹方程为4x=y^2(2)设过点(-1,0)方程为

已知动圆过定点D(1,0),且与直线l:x=-1相切.(1)求动圆圆心M的轨迹C (2)过定点D( 1,0)作直线l交轨

设圆心坐标(X,Y)(X+1)^2=Y^2+(1-x)^2;Y^2=4X;设直线方程Y=K(X-1)带入的K^2X^2-2K^2X+K^2=4XK^2X^2-X(2k^2-4)+K^2=0X1+X2=

已知动圆过定点p(1.0),且与直线X= (-1)相切,点C在直线上

一、思路先要画个清晰的图出来1圆心到直线的距离等于到定点p的距离,则轨迹为抛物线,设为y^=2px2根据抛物线的定义:到直线的距离等于到定点p的距离,在图上分别将PA,PB转化为到直线X=(-1)的距

已知动圆与直线x=-1相切,且过定点F(1,0),动圆圆心为M求点M的轨迹c的方程

设点M为(X,Y),绝对值(X+1)=根号下【(X-1)^2+Y^2】,两边平方,化简得Y^2=4X