已知向量OA=向量a,向量OB=向量b,点M关于点A的对称点为S
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:02:27
A(x1,y1),B(x2,y2),C(x3,y3)则重心坐标为O=((x1+x2+x3)/3,(y1+y2+y3)/3)OA=(x1-(x1+x2+x3)/3,y1-(y1+y2+y3)/3)OB=
点O是三角形ABC的重心 ==> 中线AD、BE、CF过点O,且 向量AO=2向量OD,向量BO=2向量OE,向量CO=2向量OF.延长AD到G使得 向量
a+b的模的平方=(a+b)(a+b)=a的模的平方+b的模的平方+2ab=144+16+2*a的模*b的模*cos60=144+16+2*12*4*0.5=208所以向量a+向量b的模=4倍根号13
设OA*OB=OB*OC=OC*OA=k,由OA+OB+OC=0得OA*(OA+OB+OC)=0,即OA^2+2k=0,因此OA^2=-2k,同理,OB^2=OC^2=-2k,因此AB^2=(OB-O
因为C在AB上由平面向量性质向量OC=k向量OA+(1-k)向量OB=kc向量a+(1-k)d向量b,其中k为实数所以x=kc,y=(1-k)dx/c+y/d=1
(向量a+向量b)•向量AB=(向量b+向量c)•向量BC=(向量c+向量a)•向量CA,——》(向量a+向量b)•(向量b-向量a)=(向量b+向量c
设AB中点MOM=(a+b)\2MP=p-(a+b)\2由于AB⊥PM则MP*AB=0p*(b-a)+(a^2-b^2)\2=0即p*(a-b)=(a^2-b^2)\2=5\2
OA+OB+OC=0两端同乘以OA得OA^2-2=0,|OA|=√2同理,|OB|=|OC|=√2所以,由AB^2=(OB-OA)^2=OB^2-2OB*OA+OA^2=6得|AB|=√6同理,|BC
|OA-OB|=4或2再问:过程再答:已知向量OA∥OB,OA与OB同向时,|OA-OB|=|3-1|=2;OA与OB反向时,|OA-OB|=|3-(-1)|=4;
证明:∵OM=λOA+μOB且λ+μ=1,∴OM=λOA+(1-λ)OBOM=λ(OA-OB)+OBOM-OB=λ(OA-OB)从而MB=λAB从而向量MB与向量AB共线,∴M,A,B三点共线.
设oc向量为(m,n)根据向量oc与oa垂直,所以oa.oc=0=4m+6n式1又因为ac向量=oc-oa=(m-4,n-6)并且ac与ob平行,所以有ac=kobm-4=3k式2n-6=5k式33个
由直角得:OA·OB=(a-b)(a+b)=a²-b²=0∴‖a‖=‖b‖由等腰得:‖OA‖=‖OB‖即‖a-b‖=‖a+b‖∴√(a-b)²=√(a+b)²∴
自己画图:∵a+b=c+d∴a-d=c-b,又∵a-d=向量DAc-b=向量BC∴向量DA=向量BC,即:|DA|=|BC|,且DA‖BC∵有一组对边平行且相等的四边形是平行四边形∴ABCD是平行四边
有一个公共点的两个向量共线就可以证明三点共线了向量AB=tb-a向量BC=1/3(a+b)-tb向量AB=β向量BCtb-a=β(1/3a+1/3b)-βtbtb-a=(β/3-βt)b+1/3βa-
向量OD=1/2(OA+OB)=1/2(向量a+向量b),根据向量的加法运算和菱形的性质,可以很简单的求出.
解析:已知AB向量=2i-3j.OB向量=-i+j,那么:向量OA=向量OB+向量BA=向量OB-向量AB=-i+j-(2i-3j)=-3i+4j
向量OP=向量OA+向量AP=向量OA+t向量AB=向量OA+t*(向量OB-向量OA)=(1-t)*向量OA+t*向量OB
由向量OA+向量OB-向量OC=向量0,可知向量OA+向量OB=向量OC,任取一点为O点,画出三个向量(角AOB化成直角更直观),【OA】=【BC】,【OB】=【AC】,且满足勾股定理,故事直角三角形
(1)向量OE=1/4向量a+3/4向量b向量OF=1/5向量d+4/5向量b向量EF=1/5向量d-1/4向量a向量EC=向量c-1/4向量a-3/4向量b(2)向量ED=向量EO+向量OD=向量d