已知圆O外一点P,如何用尺规过点P作圆O的切线?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:00:15
PA比PB=3比2设比值是x,有PA=3x,PB=2x在RT三角形OPA中,OA=r,AP=3x,OP=r+2x所以有r²+(3x)²=(r+2x)²r²+9x
辅助线已作如图先证三角形ABP相似于三角形CAP:公共角P角ABP=角CAB+角ACB角CAP=角OAP+角CAO且三角形OAC等腰,从而角ACB=角CAO因为角CAB=角OAP=90°所以三角形AB
只知道一种(真正的尺规作图的话,应该没别的了)连接点P和点O(没圆心的话得先用两条弦的中垂线确定圆心);以OP为直径做圆(需用作中垂线的方法找OP中点);改圆和圆O交于两点M、N;作直线PM和直线PN
连OP,用尺规做OP中垂线交OP于A以A为圆心,AO为半径画圆,交圆O于B,C两点则PB,PC为圆O切线
首先在圆内随便画一条直线,通过圆上两点A,B,然后用尺规做两点的间的垂直平分线,然后再用上诉方法做另一条垂直平分线,两条垂直平分线的交点就是圆心,然后就能做随便一点的切线```
设OP和AC交D因为知道角P=角BAC且角POA=CBA所以角OAP=90所以可以算出AP的值而且AC垂直OP说以可以算出AD的值(面积法等)且OD是AC中垂线ADX2=AC
(1)充分延长给定点所在直线(2)以给定点为圆心,任意长为半径作圆,交直线与两点(3)以此两点为圆心,大于(2)中长为半径分别作圆,两圆交于两点(4)连接此两点即得垂线
过点P作PD⊥BQ,则可知ABPD为矩形,BD=AP=1PD=ABQD=BQ-BD=-4-1=3由题可知PC=AP=1CQ=BQ=4则PQ=4+1=5在Rt△PDQ中,PD=PQ-QD=5-3则PD=
∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8
连接OP,尺规法找到OP中点M,以M为圆心,OP为直径作圆与圆O交于点A,点B连接PA,PBPA,PB即为所求切线
连接圆心和P点,用尺规画出这一线段的中点,以这条线段的中点为圆心,这条线段的一半长为半径作圆,辅助圆与已知圆的交点就是切点,然后连接就可以了
连接OP,以OP为直径作圆与圆交于A、B两点,连PA、PB即为所求.由于OP是直径,那么角OAP角OBP都是直角,PA、PB都是圆O的切线.是一个数学的教育平台好像,记的初中数学书里经常出现这个Z+Z
1、连接圆O的圆心O和P两点2、分别已点O和P为圆心,已OP长为半径,做两个圆3、两个圆的两个交点为A,B两点,连接AB与OP交于C点4、已C点为圆心,已CP为半径做圆,交圆O于D,E两点5、连接PE
过B作BE⊥X轴于E,过C作CF⊥X轴于F,过D作DQ⊥X轴于Q,∵OD=AD=3,∴OQ=1/2OA=2,DQ=√(OD^2-OQ^2)=√5,二次函数最大值之和就是BE+CF的值,设P(m,0),
一,由切割线定理得到:AE²=PA*PB,AE=√[2(2+3)]=√10.二,由切割线定理得到:PE²=PC*PD=PC(PC+CD),PC=√14-2【另一值已
(1)①OP=根号(5²-4²)=3②OQ=根号(5²-3²)=4因为两条弦平行所以O、P、Q三点共线(2)同理,OQ=4,所以PQ=1或PQ=7(3)相等,发
1)因为B是OP的中点,所以BP=OB因为BC⊥OP所以BC是OP的垂直平分线所以PC=CO所以∠DPO=∠COP因为弧AC=弧CD所以∠DOC=∠COP所以∠DPO=∠DOC2)设CD=x,则DP=
(1)连接AO、BO、PO,则OA⊥AP,OB⊥BP.在RT△AOP中,AO=8cm,PO=16cm,所以,∠APO=30°.同理,∠BPO=30°.因此,∠APB=60°.(2)连接OM、OE、OF
1、连接圆O的圆心O和P两点2、分别已点O和P为圆心,已OP长为半径,做两个圆3、两个圆的两个交点为A,B两点,连接AB与OP交于C点4、已C点为圆心,已CP为半径做圆,交圆O于D,E两点5、连接PE