已知如图在三角形中角B=90度,AD平分角BAC交BC于点D

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:04:41
已知,如图,在平面直角坐标系中,A(-1,0),B(0,2),第二象限中的三角形ABC为等腰三角形,角ABC=90度(

C点坐标(2,-3),P点坐标(2,3),(-1,3),(-3,3),理论上,4个象限都存在这样的一个P点!再问:过程,最好有图,谢谢,第一个是(2,3)再答:C点可以是(2,-3)也可是是(2,3)

已知如图,已知在Rt三角形ABC中,角ACB=90度,点D.E在AB上,AD=AC,BE=BC 若∠B=60°,则∠DC

AD=AC则∠ECA+∠ECD=∠CDA=∠DCB+∠BBE=BC则∠DCB+∠ECD=∠CEB=∠ECA+∠A两式相加得∠ECA+∠ECD+∠DCB+∠ECD=∠DCB+∠B+∠ECA+∠A又∠A+

如图,在平面直角坐标系中,已知三角形ABC,BC=AC,角ACB=90度,点C、点B分别在x轴、y轴

1、C点在线段AB的垂直平分线上,垂直平分线与x轴的交点即为C点;因为A(-2,-2),B(0,4),直线AB的斜率为3,所以垂直平分线斜率为-1/3,并过点(-1,1),所以线段AB的垂直平分线为y

已知,如图,在RT三角形ABC中,角ABC=90,

题目中AO=x,应改为AP=x设OB=OE=OD=R在RT三角形AOD中,AO^2=OD^2+AD^2(1+R)^2=R^2+4R=3/2AO=1+R=5/2AB=AO+BO=4如AP=AD,则x=A

如图 在三角形ABC中 已知角B=60度 AB=8 BC=10 求三角形ABC的面积

画出三角形,在BC边做一条高线,与BC边的交点设为D.在三角形ABD中,角B=60度,角ADB=90度,(三角形三角之和为180度)那么角BAD=30度,又已知AB=8,由三角形勾股定理得,BD=4,

已知如图,在三角形ABC中,∠ACB=90°,将三角形ABC绕点C按顺时针方向旋转得三角形A'B

这图只有几粒米大.也无法放大.重新上传大一点图,亲

如图,在三角形ABC中,已知角ACB=90度,CD为AB边上的高,DE垂直AC于点E,三角形ADE的中线AG的延长线交B

第一个问题:延长CG交AB于H.∵BC⊥AC、DE⊥AC,∴BC∥DE,∴EG/DG=CF/BF,而EG=DG,∴CF=BF,又CF=FG,∴CF=FG=BF,∴点F是△BCG的外接圆圆心,∴BC是△

如图,已知三角形ABC中,D在BC上,E在AC上,角B=角C

解题思路:根据等腰三角形三线合一的性质可得∠DAC=1/2∠BAC=20,∠ADC=90从而可得∠CDE解题过程:

如图:已知三角形ABC中,角B=90度,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上.其中l1,l2之

过A作EF垂直相互平行的三条直线l1,l2,l3和l1交于E和,l3交于F,过C作CD垂直相互平行的三条直线l1,l2,l3和,l3交于D,角B=90度,AB=BC,△ABF≌△BCD故BF=CD=1

如图已知三角形中ABC全等三角形ADE,角B=30,角E等于20度,

由于全等所以角E=角C=30°,角B=30°,所以角BAC=130°

如图,在三角形ABC中,已知角B=90度,角ACD=4角A,求角A的度数.

没有图片啊OTZ再问:那个,其实是我没发出来。。。。。。我会写了,谢你啦再答:好吧o(∩_∩)o

已知,如图,在三角形ABC中,

∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)

已知,如图,在三角形ABC中,角ACB=90度,AC=BC,

作AH//BC,延长EC交AH于H,连接CH,CEAH//BC∠EFG=∠GAH,AG=GF,∠EGF=∠AGH△EFG≌△AGH(ASA)EF=AH因BE=EF所以,BE=AGAC=BC,∠EBC=

已知,如图在三角形ABC中,角ACB=90度

我会再问:快答案再答:在写再问:好快点再答:先采纳吧!再问:好了吗再问:好了吗

已知;如图,在三角形abc中,角c=90度,求证,点abc在同一个圆上

取AB中点E,连接EC∵E为AB中点且△ABC为直角三角形∴AE=BE=1/2AB,CE=1/2AB(直角三角形斜边上的中线等于斜边的一半)∴AE=BE=CE∴A,B,C三点在以E为圆心的圆上

已知:如图,在三角形abc中,角c=90度,ab的垂直平分线

已知:如图,在三角形ABCc中,∠C=90度,AB的垂直平分线交BCc于D,如果∠CAD:∠DAB=1:2,求∠B的度数∵DE垂直平分AB∴∠B=∠DAB∵∠CAD:∠DAB=1:2∠CAD+∠DAB